
COLOR COMPUTER
EDITOR ASSEMBLER

WITH ZBUG

TABLE OF CONTENTS

SECTION ONE: USING THE EDITOR
ASSEMBLER + 1

Chapter 1 / Introduction . 3

Chapter 2 I Examining Memory . 5

Chapter 3 / ~Vriting the Program • 9

Chapter 4 / Assembling . 13

Chapter 5 i Debugging with ZBUG 1 7

Chapter 6 ; Using the ZBUG Calculator 21

Chapter 7 / Running the Program from BASIC 25

SECTION TWO: 6809 ASSEMBLY
LANGUAGE REFERENCE 27

Chapter 8 / 6809 Assembly Language 29

Chapter 9 / Assembler Pseudo Operations 35

Chapter 10 I 6809 Instruction Set 37

SECTION THREE: APPENDIXES 53

Appendix A / Editor Commands 55

Appendix B / Assembler Command & Switches 58

Appendix C / ZBUG Commands 59

Appendix D / Error Messages 6 1

Appendix E / Memory Map 63

Appendix F / ROM Routines•............... .. 64

lnriP.x 67

________________________,jF-D!b-=M+

1 / Introduction
The brain of the Color Computer is the 6809 Micropro
cessor. II is always operating in 6809 machine code. the
only language it knows.

When you program in BASIC. a ROM program called the
BASIC Interpreter .. ,ranslates .. each statement. one at a
time, into 6809 machine code.

The Editor-Assembler - allows you to write a program in
6809 assembly language and assemble it into a single,
eflicient 6809 machine code program. This gives you
two very powerful advantages:
• You are no longer limited to the commands in the BASIC

language.

• Many steps that are necessary to interpret a BASIC
statement into machine code will no longer be needed.
Therefore. the programs you write with the Editor
Assembler + will run much faster. and probably use
less memory.

Th is manual demonstrates how to use the Editor
Assembler ~ . It will not teach you how to program in
assembly language. Radio Shack has an excellent book
devoted to the subject. It's Catalog Number is 62-2077.
You can purchase ii through any Radio Shack store.

The Editor-Assembler + contains three systems:

· The Editor. for writing and editing 6809 assembly lan
guage programs.

• The Assembler, for assembling the programs into
6809 machine code.

• ZBUG, for examining and debugging your machine
code programs.

To use them, all you need is a Color Computer with 16K
RAM and a tape recorder.

How You Will Use
These Systems

1. First you'll write the program in assembly language,

3

using mnemonics which the Assembler recognizes
and which is fairly easy to use. This is done in the
Editor and the resulling program listing is called TEXT.

2. Then you·11 assemble the instructions of TEXT into
machine code which the 6809 Microprocessor can
recognize, but which looks like nonsense lo most peo
ple. Thus. you·11 create CODE consisting of op codes
and data.

3. You·n use ZBUG to test and debug CODE until it's per
fect. Then you'll store it on tape. Storing CODE is the
final task of the Editor-Assembler - .

4. From BASIC, you·u load CODE (with CLOADMJ and
run it. You can either run it as a stand-alone program
(with EXEC) or as a subroutine (with USRJ.

How This Manual
Will Guide You

This manual will walk you through all these steps and also
give you some useful information about your Editor
Assembler + .

In Chapter 2, we·11 explore memory. You'll need this foun
dation to understand the rest of the manual. We"II do this
withZBUG.

Chapters 3, 4. 5, and 6 will show you how to write the
program, assemble it, and debug it. Finally in Chapter 7.
we'll show you how to run the program from BASIC.

If you've used other editor-assemblers. you might want to
start with the Appendixes. There, you·11 find all the com
mands summarized with page number references.

And Now Let's Get On
With It . ..

To use the Editor-Assembler -'- , follow these steps:

1. Tum OFF the computer.

1 / INTRODUCTION

2. Insert the ROM pack into the slot on the right side of EDTASl'I+ 1 . 0
thecomputer. COP YRIGHT '"' 198! ~y MICROSOFT

3. Tum the Computer ON. •

When you turn the computer ON, you w!II see: The asterisk prompt C'J tells you that the Editor is now
available. We say you are ·,n"the Editor.

4

_________________________ e.a~a=M+

2 / Examining Memory

To use the Editor-Assembler + , you must have a good
understanding of the Color Computer's memory. You will
need to know abou t memory to write the program.
assemble it. debug it. and execute it.

In this Chapter. we·11 explore memory and see some of
the many ways you can get the information you want. To
do this. we'll use ZBUG.

Type:
z m=N=u=R)

and ZBUG will d isplay its # prompt. You are now "in"
ZBUG and you may enter a ZBUG command.

All ZBUG commands must be entered in this command
level. You can return to it by pressing (p!.!M!() or (ENTER).

Examining a Memory Location
The 6809 can address 65,536 one-byte memory loca
tions, numbered 0-65535 COOOO-FFFF hexadecimall.
We'll examine hexadecimal location COOO. the beginning
of the Editor-Assembler program. Type:

C000/

LOA #6 is the "mnemonic" instruction that begins at loca
tion COOO.

To examine the next instructions. press the 0. Use the
(+) to get back to a preceding location. Notice that when
you use the(+) the screen continues to scroll down. The
smaller addresses are displayed at the bottom of the
screen.

Also notice that the 0 will increment by more than one
byte in this particular examination mode. More on this in
the following pages.

The (~ l. however, will always decrement the address by
one, regardless of the examination mode.

All the numbers you see are hexadecimal. Hexadecimal
means base 16. You will see not only the ten numeric dig
its, but also the six alpha characters needed for base 16
CA-Fl. ZBUG assumes you want to see base 16 numbers
unless you specify another base (wh ich we'll do in
Chapter 6).

5

Notice that a zero precedes all the hexadecimal numbers
beginning with an alphabetic character. This is done to
avoid any confusion between hexadecimal numbers and
registers.

Examining Modes
To help you interpret the contents of memory. ZBUG
offers four ways o f looking at it:

Byte Mode
Type (BREAK) to get into the command level and then type:

B (ENTEii)

Examine the contents beginning at location COOO again.
LOA #6 is now represented as a number. 86 is the op
code for LOA. The operand, 6. is in location C001 .

The byte mode displays every byte of memory as a num
ber, whether it is part o f a machine language program
or data.

In this examination mode, the~ increments the address
by one.

Word Mode
Get back into the command level and type:

1,1 (ENTERI

Look at the same memory. Press the(~ key a few times.
The numbers are the same, but you are seeing them two
bytes or one word at a time.

Here, the 0 increments the address by two.

ASCII Mode
From the command level. type:

A (ENTER)

ZBUG is now assuming that the contents of each mem
ory location is an ASCII code. If the "code" is between 21
and 7F Chexadecimall, ZBUG displays the character it
represents. Otherwise, it displays nothing.

Examine the locations beginning with C056. These loca
tions contain the Editor-Assembler+ display heading.

2 / EXAMINING MEMORY

Note: ZBUG will also displ,1y the A 1 through FF as
ASCII characters. However. they are not the true
ch,1racters which these codes rcpre.~em.

Here, the C•J increments the address by one.

Mnemonic Mode
This is the default mode. Unless you ask for some other
mode, as we t-ave been doing, you will be in the default
mode. To return to it, get in the command level and type:

M fE~TERI

Look at the locations beginning at COOO again. You'll see
the same instructions you saw at the beginni:iy o f this
chapter:

C000/
:0021
etc.

LOA •6
STA>0F•

Ir. this mode, Z.BUG assumes you 're examining a
machin:s language program. It examines memory from
one to five bytes at a time by ·'disassembling" the num
bers into the mr.ernonics they represent. The number
8606 <from locations cooo and coo; l has been disas
sembled into LOA #6: 8700FF (from locations C002,
C003, and COO•l into STA FF: etc.

Begin ti1e disassembly at a different byte. Type (fill_@(;
c0011 and press the (.) several times. You will see a
ditferent disassembly:

C00li ROR<087
CSZ3! NEGl 0Fr
etc.

The contents o f memory have not changed. ZBUG has,
however. interpreted them differently. The number 06B7
(from locations C001 and C002l has been disassembled
into ROR· ·OB7: DOFF (from locations C003 and C004l
has been disassembled into NEG,. OFF: etc.

To see the program correctly, you must be sure you are
beginning en the correct byte. Sometimes, several bytes
will contain ·,?. This means ZBUG can't figure out what
instruction is in that byte and is possibly disassembling
from the wrong point. Unfortunately, though. the only
sure way of knowing if you're on the right byte is by know
ing where the program starts.

Changing Memory
As you look at ihe contents of memory locat,ons, notice
that the cursor is to the right. This allows you to change
the contents ol that location. After typing the new con
tents, press (ENITA) or C• 1 and the change will be made.

For an example of changing memory. we'll open a loca
tion in Random Access Memory CRAM). Up to now, we·ve

6

only been examining locations in Read Only Memory
CROM) which we can't change. Get into the byte mode
and open location 1 OAA by typing:

(8REAIQ B (ENTER;
10AA/

Note that the cursor is to the right. Type:

I (ENTER)

and the location now contains a 1. You can accomplish
the same thing by typing:

10AA /

and then:

oo C•J
which changes ihe contents to DD and allows you to
change the next location. (Press [~ to see that the
change has been made.)

The size of the changes you moke wil l depend on the
examination mode ,ou are in. In cyte mode, you will
change one byte only and can type one or two digiis.

In the word mode. you will be changing one word at a
time. Any one. two. three or four digit number you type
will be the new value of the word.

ii you happen to type a number v,hich is also the name cf
one of the 6809 registers (A,B,D.CC.DP.X,Y.U.S.PCJ,
ZBUG will assume ifs a reg ister and give you an
"EXPRESSION ERROR:· To avoid this confusion, type a
leading zero COA,OB.etc.l.

To change memory in the ASCII mode. use an apos
trophe before the new letter. For example, to write the let
ter A in memory at location 0000. type:

A (ENTER)
to go into ASCII examination mode, type:

0000/
to open that location and type:

'A (.')

to change it. Typing the 0 will assure you that the loca
tion contains the letter A.

If you are !n mnemonic mode. you are expected to
change one to five bytes of memory depending on the
length of the particular instruction. Things get just a bit
complex in mnemo!'lic mode because you canl use mne
monic assembly language instructions. You must use the
op code equivalent instead.

For example. get into the mnemonic mode and open
location 1000. Type:

M (ENTER)
1000/

________________________ •_o-a-=M+

To change this instruction. type:
~6 {filfTElll

Now location 1000 contains the op code for the LOA
instruction. Open location 100 t:

1001/

and insert 06. the operand:

0scrnmo
UPO!l examining location 1000 again, you II see it now
contains a LOA #6 instruction.

7

Exploring the Computer's
Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Appendix E

The following activities will allow you to become familiar
with the Editor so don·t be afraid to try commands or
change memory. You can restore anything you alter by
simply turning the computer OFF and ON again.

Er.t •».:M+ -----------------------

3 / Writing the Program

To write assembly language programs. you will use the
Editor. You can enter it by powering-up, pressing RESET,
or (from ZBUG> typing E (ENTER). The asterisk prompt tells
you that the Editor is available for commands. We say
you are "in .. the Editor.

The Editor has quite an assortment of commands to
assist you. To use any of them. you must be at command
level, as you are now. You can return to this command
level by pressing (BREl(f().

Sample Programming
Exercise

For those of you new to editor-assemblers. we're includ
ing this sample programming exercise. We'll be referring
to it in our examples throughout the manual. If you've
used other editor-assemblers, you may skip this exercise
and begin reading about the Write command.

To get started. type:

I CllifRl
Even though you have not typed anything yet. the Editor
thinks that you are inserting lines into an already existing.
although empty. edit buffer.

The Editor will respond with a line number. This line num
ber is for your convenience while in the Editor and will not
affect the machine language program at all.

To insert a comment line, type an asterisk and comment
away. For example. insert this line:

00 100 •THIS IS A COMMENT LINE ~NTEII)

The Assembler will ignore comment lines. You may type
as many of them as you wish to explain your program to
passing humans without confusing the computer.

You may delete this line and start over by pressing C.DfilA.IO
to get back into the command level and then typing:

D 100 (ffillB)

To type a program line, you will use four fields: the sym
bol. command. operand and comment fields. You can tab
from one field to the next by pressing the [i_J key.

9

Insert this program line. using the(!) key to tab from one
column to the next:

00100 SYMBOL CMD OPERAND COMMENT (ENTER)

The symbol. command and operand fields must be ter
minated by a tab, space or carriage return. The symbol
may be up to six characters. The comment is optional.
The maximum line length is 128 characters. Note that
long lines will "wrap around" your screen to the next line.

Delete whatever lines you have in the edit butter and
insert the following sample program. You may omit the
comments, if you like:
00100 START LDA •S0F9
00110 LDX •S500
00120 SCREENS TA ,X+
00 I 30 CMPX •SSFF
001a0 6NE SCREEN
00 150 DONE SI-I I
00 160 ENO

LOAD ASCII CHAR
6EG1N VIDEO MEM
PUT CHAR ON SCREEN
SEE IF END UI DE• MEM
BRANCH IF NOT

This stores graphics character number F9 into video
memory locations 500-SFF. The dollar symbol ($) indi
cates a hexadecimal number. Without this symbol. the
Editor will assume the number is decimal. (Note that the
Editor defaults to decimal. whereas ZBUG defaults to
hexadecimal.>

A description of all the other symbols, as well as the 6809
instructions. are in Part Two. "6809 Programming Ref
erence Section:·

Write Command
W filename

To save the sample program to tape (before making any
experimental changes). type:

W SAl'\PLE (tNTER]

You will be prompted with "READY CASSffiE". When
the recorder is ready to record Ci.e .• you have inserted a
tape and pressed PLAY and RECORD), type (ENTER:. Your
program will be saved as a 'TEXT ' file.

3 / WRITING THE PROGRAM

If you don't give your hie a name. the default name
NONAME will be assigned. It is a good idea to use file
names, especially if you will be storing more lhan one file
on a single tape. Filenames may be up to eighl charac
ters long and must begin with a letter of the alphabet.

We recommend that you make a copy of your program
before executing ii. An assembly language program is
not nearly as forgiving as BASIC. Executing the program
with even a very small bug might result in erasing the
entire edit bulfer. In less than a second. many hours of
editing and trial assembly can be completely obliterated!

Alter writing the file. it is useful to verify the tape with the
V command. This command verifies the checksum on the
tape. This verification could save frustration when saving
long programs. The V command is listed in Appendix A.

Load Command
L filename

To load the TEXT file from tape, type:

L SAMPLE WlEII'
You will be prompted to get your cassette recorder ready.
(Rewind the tape and press PLAY.) When you press
!ENTER). the recorder will begin searching for a file named
SAMPLE. If yau just want the first file. or whatever file is
next on the tape, you may omn the filename.

This command will load a TEXT file only. CYou will use the
BASIC CLOADM command to toad your assembled
CODE file.)

Note: The Editor does not automatically empty its
buffer before a LOAD. If a program is currently in
memory. the program being LOADed will be
appended to the one in memory,

This can be useful for chaining tong programs,
When the second file is /oadec. simply renumber
the file li.e .. NIOO. 100).

If you do not desire this, empty the buffer before
loading a new program (i.e .. DI! : ·1.

Print Command
Prange

To print a line of lhe program on the screen. type:
P 100 ~E!illl!l

To print more than one line. type:

P 100 : 130 '.ENJEIO

Since the fi rst line, last line, and current line are very
often referred to, you can refer to them with a single
character:
= first line

•
10

• last fine
current line (the last line you printed or inserted)

To print the current line. type:
P , ;lHTERl

To print the entire text of the sample program, type:
P=: • (ERTERl

This is the same as P 100: 1 s0 (ENTER).

Tne colon separates the beginning and ending lines in a
range of lines. Another way to specify a range of lines is
with ! . Type:

P• I 5 (!RIB!;

and five lines of your program. beginning with the first
one, will be printed on the screen.

To stop the listing, you may quickly type:
CSRifl) @

To continue, press any key.

Printer Commands
Hrange
Trange

If you have a printer. you can print your program with the
H and T commands. Both are closely related to the
Pcommand.

H• : • (ENTB!)

will print every line of the edit butter to the printer. You will
be prompted with:

PRINTER READY
and you should respond with (ENTE!I) when ready.

T100!G (ENT_ER)

will print six fines. beginning with line 100, to the printer.
but without the Editor-supplied line numbers.

Edit Command
Ellne

You can edit lines m the same way you edit Extended
BASIC lines. For example. to edit line 100. type:

E 108 ;ENTEi!)

The new line 100 is below old fine 100 ready to be
changed.

Press the (SPACE81\E to position lhe cursor just after
START and type this insert subcommand:

I ED ::E}l1£li)

which inserts ED in the fine.

All the edil subcommands are listed in Appendix A.

________________________ _,Jp_u,.a=M+

Delete Command
Orange

If you are using the sample program, be sure you have
written it on tape before you experiment with this com
mand. Type:

Dl l0:la0 ~NTE8)

Lines 11 O through 140 are gone.

Insert Command
lstartline,increment

Type:

! 152 , 2 (ENTER)

You may now insert lines beginning with line 152. Each
line will be incremented by 2. (The Editor will not allow
you to accidently overwrite an existing line. When you get
to line 160. it will give you an error message.)

Press (BREAKJ to return to the command level and type:
I 170 (ENTE11J

This allows you to begin inserting lines at the end of the
program. Each line will again be incremented by 2. the
last increment you used.

Type:
(8Ni!K) ! (ENTER)

The Editor will begin inserting at the current line.

On start-up, the Editor sets the current line to 100 and the
increment to 10. You may use any line numbers between
o and 83999.

Renumber Command
Nstartline, increment

Another command that helps with inserting lines between
the lines is N Uor reNumberl. From the command level,
type:

N!00 ,50 (ENIHO

Now the lines begin with line 100 and are all incremented
by 50. This allows you much more room ior inserting
between lines.

Type:
N 1·~ENT-E-Rl

The current line is now the first line number.

Renumber now so we will all be together for the next
instruction. Type:

N!00 ,10 (ENTERJ

11

Replace Command
Rstartline,increment

The replace command is a variation of the insert com
mand. Type:

R l 01i\ ,3 crnt_m)
You may now replace line 100 with a new line and begin
inserting lines using an increment of three.

Copy Command
Cstartline,range,increment

The copy command will save you a lot of typing by dupli
cating any part of your program to another location in the
program.

To copy lines, type:
CS00 d 00 : 150 ,10 (.ffiTERJ

This wil! :xJPY the range of lines irom 100 to 150 to a new
location beginning at line 500. with a line increment of 10.
An attempt to copy lines over each other will fail.

ZBUG Command
To exit the Editor and enter ZBUG. type:

Z :ENTER)

A different prompt, the •. tells you that you are now in
ZBUG.

To re-enter the editor from ZBUG. type the ZBUG
command:

E (ENTER;

If you print your program. you'll see that entering and
exiting ZBUG did not change it.

BASIC Command
To enter BASIC from the Editor, type:

Q (ENTER)

for Quit. To re-enter the Editor from BASIC, type:
EXEC as1s2 i,LNTERJ

or

EXEC ~HC000 (ENTER)

which is the same address in hexadecimal. This is the
first address of the Editor. You must use the decimal form
if you have a 4K computer.

Entering BASIC will empty your edit butler. Re-entering
the Editor will empty your BASIC buffer.

Hints on Writing Your Program:
• Copy short programs unreservedly from any legal

source available to you. Then modify them one

3 / WRITING THE PROGRAM

step at a time to learn how different commands
and addressing modes work. Try to make the pro
gram relocatable by using indexed, relative, and
indirect addressing (described in Part I IJ.
Try to write a long program as a series of short rou
tines that share the same symbols. They will be

12

easier to understand and debug. They can later be
combined into longer routines.

Note: You can use the Editor to edit your BASIC
programs. as well as assembly language pro
grams. You might find this very useful since the
EDTASM+ Editor is much more powerful than
BAS/C's.

________________________1F.D~»-=M+

4 / Assembling
The ::ommand to assemble your text program into
machine-code is simple. Just type (from the Editor com•
mand levell:

A Fi LENAME (fNTERJ

If your program is in memcry. you will be prompted with:

CASSETTE READY
and when you press (ENTER) your C/:!Ssette recorder will
start. You are assembling the object program on tape for
use another time and place. The Assembler will display
a listing to explain what it is doing. (See Figure 1 for an
explanation of the listing.)

While this is the simplest form of the assemble com•
mand, it is not the one you will use first. You will want to
make absolutely sure the program works before you
assemble it to tape.

There are several options called switches which you can
use to assemble the program for trial purposes. You may
use any combinaticn of these switches. For example:

A/IM/WE
A/WE/LP/NS
A TEST/LP
are all acceptable assembler commands.

/WE
Wait On Errors Switch
You will normally want to use this switch. It causes the
Assembler to stop each time it encounters an error in
your program. Press any key to continue the listing.

!SS /NO /NS /NL /LP
Listing Switches
Use these switches if you want the assembler listing
(illustrated in Figure 1) to appear differently:
/SS Short screen listing
/NO No object code in the listing
/NS No symbol table in the listing
iNL No listing at all
/LP Listing printed on the printer

13

/IM
Assembling In Memory Switch
The program will be assembled in memory. not on tape.
This is usually for a trial assembly.

Where ir. memory? Used with no other switches, the
Assembler will store your program just after the symbol
table whic~, is just after the edit buffer:

EDIT BUFFER
SYMBOL TABLE

ASSEMBLED PROGRAM STARTS HERE

L _______ ____J

TOP OF RAM

Figure 2. In Memory Assembly

~ 0800

4FFF (16Kl
7FFF (32Kl

fhe edit buffer contains your assembly language pro•
gram. It begins at hexadecimal address 0800, and will
vary in size depending on how long your program is.

The symbol table references all the symbols in your pro
gram and their corresponding values. Its size also varies
depending on how many symbols your program has.

If you typed the sample program, you can try out an in
memory assembly. Make sure the program is in the Editor
in its original form. Then, from the Editor command level.
type:

A/ IM <ElffiID
(If you want another look. type A/ IM over again. You can
pause the display with :sH!FD ((a) and continue with
any key.l

Since this sample program uses START to label the
beg inning of the program. you can find its originating

F 0013 START
•~0FS

0002 BE 0500 00110
LOX •s500

0005 A7 80 00120 SCREEN
STA ,X+

0007 BC 05FF 00130
CNPX •SSFF

000A 26 F9 001a0

BNE SCREEN
0ll0C JF 00150 DONE

SW!
0000 00160

END

00000 TOTAL ERRORS ©
DONE 000C
SCREEN 0005
START 0000

@

(i) The location in memory where the assembled code
will be stored. In this example. the assembled code
lor LOA tt$F9 will be stored at hexadecimal location
0000.

® The assernbled code for the program line. 86F9 is the
assembled code for LOA #$F9.

@ The program line.

@) The number of errors. If you have errors. you will want
to assemble the program again with the /WE switch.

@ The symbols you used in your program and the mem
ory locations they refer to.

Figure , . Assembly Display Listing

14

4 / ASSEMBLING

address from the assembler listing. If you examine it with
ZBUG, you'll see that it has been assembled into memory
beginning between 0800 and 0900.

/AO
Absolute Origin Switch
This switch allows you to absolutely determine where in
memory you want your assembled program to originate.
To use it, you need to have an ORG instruction at the
beginning of your program.

Insert this line at the beginning of the sample program:
00050

Now type:
A/ IM/AO

ORG $JF00

If you use ZBUG, you'll see that your assembled program
now begins at location 3FOO:

EDIT SUFFER
SYMBOL TABLE

ASSEMBLED SAMPLE PROGRAM

TOP OF RAM

, 0800

3FOO

4FFF(16Kl
7FFF 132K)

Figure 3. /AO In Memory Assembly

As you can see, the AO switch set the location of the
assembled program only. It did not set the location of the
edit buffer or the symbol table.

If your ORG instruction has not allowed enough room in
memory for your program. you will get a BAD MEMORY
error. The assembler cannot store your program beyond
the top of RAM.

/MO
Manual Origin Switch
The manual origin switch offers you maximum control of
in-memory assemblies. You can use it to assemble the
program using the contents o f these two memory
addresses:

• USRORG (which contains the originating address of the
assembled program)

• BEGTEMP (which contains 0600. This is the originating
address of the edit buffer and the symbol table (which
is 0800 minus 200. l

15

By manually changing the contents of USRORG and
BEGTEMP, you'll be able to set the originating address of
the edit buffer and symbol table as well as the executable
program. Since this procedure is somewhat involved. not
everyone will want to use the /MO switch.

To change the contents of lhese memory locations, you
will need to get into ZBUG. Save the program you cur
rently have in the Editor first. This procedure will destroy
the contents of the edit buffer.

Then get into the ZBUG word mode by typing:
z (£fflll)
W (ENl'El\l

and follow the procedures for setting USRORG or BEG
TEMP (or both of them).

Setting USRORG
On start-up, OOFD points to the top of RAM. In this exam
ple. we'll change it to 2FOO. Type:

FD/
ZF'll0 (ENTER)

Now memory locations beginning with 2FOO are pro
tected from EDTASM + and can be used for your assem
bled program.

Setting BEGTEMP
On start-up, OOFF points to 0600. In this example we'll
change it to 2000. This will make room for high resolution
graphics and data. Type:

F'F/
~000 (film!)

The address you put in P.f:r.T,::.;, , 1, .,;

.. a "paoe boundary" Ca hexr-Sti,..,cirna: nvrnb~, t..:nd1110 in 00)
• greater than 0600

• at least 300 bytes less than the contents of USRORG

Assembling the Program
To get back into the Editor, type:

CC006 (ENTER!

Load the sample program and, i f you inserted an ORG
instruction. delete it. Then type:

A / IM/MO (ENTER]

This will assemble your program into the address you set
for USRORG and BEGTEMP. If you followed our exam
ples above, this command will assemble your program as
follows:

-----------------------..--1•-D~b-=M~

BEGTEMP ,
EDIT BUFFER

SYMBOL TABLE

USRORG,
ASSEMBLED SAMPLE

PROGRAM

TOP OF RAM (16Kl

Figure 4. /MO In Memory Assembly

/NO
No Object Code Switch

0800

2200 (set by
changing
location FFl

2FOO (set by
changing
location FD>
3FFF (16Kl
7FFF (32Kl

Use this switch it you do not want to store any object
code in memory or on tape.

Hints on Assembling

16

• Use a symbol to label the beginning of your
program.

• Use the ORG instruction only when using the /AO
switch. Used with !IM alone or IIMIMO. the ORG
address will not be the program's originating
address. The Assembler will use it to offset (add
to) the loading address.

• The / WE switch is an excellent debugging tool.
Use it to detect assembly errors before debugging
the program.

• As your program library grows. it helps to use a
different system of names to separate your TEXI
CODE. and BASIC files. For instance. you might
1Yar.t to use T. C, or Bas the last letter of each file.

• If you would like to examine the edit butter and
symbol table after you assemble the program. use
ZBUG to examine memory locations beginning
with address 0800.

________________________ __.F-D•b..:M+

5 I Debugging with ZBUG
ZBUG has some very powerful tools for a trial run of your
machine language program. You can use them to look at
every register, every flag, and every memory location
during every step of running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 1. We will be
using these commands in this chapter.

Sample Program Exercise
In this Chapter. we'll use the sample program to illustrate
the debug commands. If you would like to use it and have
not typed it in yet. see "Sample Programming Exercise"
in Chapter 2.

Then insert an ORG $3FOO instruction at the beginning
of the program (reinsert it, if you deleted itl and assemble
the program using the /AO switch. See the discussion of
the /AO switch in Chapter 3 if you need help. Then enter
ZBUG by typing "Z" from command level in the Editor.

Display Modes
In Chapter 1, we discussed four examination modes.
ZBUG also has three display modes.

We'll examine each of these display modes from the mne
monic examination mode. If you·re not in this mode. type
M (ENTER).

Numeric Mode
Type:

NcE --m-ro
and examine memory locations 3FOO through 3FOC.
which contain your program. In the numeric mode, you
will not see any of the symbols in your program (START,
SCREEN. and DONEl. All you see are numbers. For
example. location 3FOA displays the instruction BNE
3F05 rather than BNE SCREEN.

Symbolic Mode
From the command level, type:

S (ENTER)

17

and examine your program again. ZBUG is displaying
your entire program in terms of its symbols (START,
SCREEN. and DONE). Examine the memory location
containing the BNE SCREEN instruction and type:

The semicolon causes ZBUG to display the operand
(SCREEN) as a number (3F05).

Half-Symbolic Mode
From the command level, type:

H (ENTER)

and examine the program. Now all the memory locations
Con the leftl are displayed as symbols, but the operands
Con the rightl are displayed as numbers.

Using Symbols to
Examine Memory

Since ZBUG understands symbols. you can use them in
your commands. For example, both of these commands
open the same memory location (no matter which display
mode you are inl:

START/
3F00/

While either of these commands will get ZBUG to display
your entire program:

T START DONE
T 3F00 3F0C

You can print this same listing on your printer by substi
tuting TH for T.

Executing the Program
Before trying a trial run of the program. be sure you have
a copy of it. As we·ve warned you, a small bug in it can
destroy everything you have in memory.

You can run it from ZBUG using the G (Gal command fol
lowed by the program's start address. Type either of the
following:

5 / DEBUGGING WITH ZBUG

GSTART (ENTER;
G3F80 ~TER)

and the program will execute. filling part of your screen
with graphics character number F9. If it doesn't do this.
the program probably has a "bug" which is what the rest
of this chapter is about.

The 8 BAK (11 3FOC or 8 BAK (n DONE is ZBUG telling
you that the program stopped executing at the SWI
instruction located at 3FOC. ZBUG interprets your clos•
ing SW! instruction as the eighth or final "breakpoint" (dis
cussed belowl.

Setting Breakpoints
If your program doesn't work properly. you might find it
easier to debug ii if you break it up into small units and
run each unit separately. From the command level. type
x followed by the address where you want execution to
breaK.

We'll set a breakpoint at location 3F05, the first location
containing the symbol SCREEN. To do this. type either o1
the following:

XSCREEN (E@)
X3F0S (fNTERl

Now type GSTART ID]JER) to execute the program. Each
lime execution breaks. type:

C (EllTEif'

to continue. A graphics character will appear on the
screen each time ZBUG executes the SCREEN loop.
(The characters appear to be in a diagonal line because
ZBUG scrolls to give you the breakpoint message.)

Type;

D :'ell'(Eit

to display all the breakpoints you have set. Type:

c10 mmro
and the tenth time ZBUG encounters that breakpoint. it
halts execution. Type:

V {E!!_TE11'1

This is the command to delete (Yankl a breakpoint. A
breakpoint number alter the Y will delete the breakpoint
at that address. Used with no breakpoint number. ZBUG
will delete all breakpoints.

You may set up to eight different breakpoints numbered
O through 7. You may not set a breakpoint in a ROM
routine.

1A

Examining Registers
and Flags

Type:

R @~

What you see are the contents of every register during
this stage of program execution. (See Section II for a de:,
inition of all the 6809 registers and flags.l

Look at register CC (the Condition Code). Notice the le1-
ters to the right of it. These are the flags that are set ,r
the CC register. The E. for example. means the E ilag
is set.

Type:
XI

and ZBUG displays only the contents of the X register.
You can change this in the same way you change the
contents of memory. Type:

0 ~

and the X register now contains a zero.

Type:

Stepping Through
the Program

3F00, Note the comma!

LOX #$500 is the next instruction to be executed. The
first instruction. LOA #SFD. has just been executec
Type:

fl (W(fi:

and you'll see this instruction has loaded register A w,t
F9. To see the next instruction (LOX #$500) executed.
type:

, (Simply a comma}

You may continue single stepping through the progra,r.
examining the registers at will. until you reach the end.
you do manage to get to SWt. the last instruction. ZBU
will print:

CAN'T CONTINUE
which means it has reached the final step in the program
CSWI causes ZBUG to stop execution. If you omit S\<\
from your program. ZBUG will continue execu tir.
memory.)

________________________ ___JF-D•b.:M+

Type:

Transferring a Block
of Memory

U JF00 001210 G (ENTER)

Now the first six bytes of your program have been copied
to memory locations beginning with 0000.

Saving Memory on Tape
To save a block of memory from ZBUG. type:

P TEST 3F00 3F0C JF00 l ~NTEA]

When the cassette is ready for recording. press ®UEIO.
This saves your program, beginning at memory location

19

3FOO and ending at 3FOC, on tape. The last number is
where your program begins execution. In this case, this
number is the same as the start address.

To load TEST back into ZBUG, type:
L TEST (ENTEll)

Hints on Debugging
• Don ·t expect your first program to work the first

time. Have patience. Every programmer has bugs
in his new programs, and debugging is a fact of
life for all programmers. not just beginners.

• Be sure to make a copy of what you have in the
edit buffer before executing the program. The edit
buffer is not protected from machine language
programs.

________________________ __,JF-D ·+...:M+

6 / Using the ZBUG Calculator
ZBUG has a built-in calculator that will perform arithme
tic, relational, and logical operations. Furthermore. it
allows you to interchangeably use three different num
bering systems. ASCII characters, and symbols.

This Chapter contains many examples on how to use the
calculator. Some of these examples require that you have
the same sample program assembled in memory that we
used in Chapter 5.

Numbering System Modes
ZBUG recognizes numbers in three numbering systems:
hexadecimal <base 16), decimal (base 10), and octal
(base 8l.

Output Mode
The output mode determines which numbering system
ZBUG will use to print or output numbers on the screen.
From the ZBUG command level, type:

•Jl0 @TER)
and examine memory. The T at the end of each number
stands for base 1 O. Type:

08 ~

and you will see a Q at the end of each number. The num
bers are all base 8. Type:

0 16 (ttl.JER)

and you are now back in base 16. which is the default
output mode.

Input Mode
You can change input modes in the same way you
change output modes. For example. type:

110 (tJHER)

Now ZBUG will interpret whatever number you input as
a base 1 O number. For example, if you are in this mode
and type:

T 49152 Q9162 (ENTER)

ZBUG will show you memory locations 49152 (base 10)
through 49162 <base 10). Note that what is printed on the
screen is determined by the output mode, not the input
mode.

21

You can use these special characters to "override" your
input mode:

BASE BEFORE NUMBER AFTER NUMBER
Base 10 & T
Base 16 s H
Bases (a 0

Table 1. Special Input Mode Characters

For example, while still in the 11 O mode. type:
T as 1 sz $C0 10 (t'NTEIO

The "$" overrides the 110 mode. ZBUG, therefore, inter
prets C01 O as a hexadecimal number. As another exam
ple. get into the 116 mode and type:

T Q9152T C010

Here, the ''T" overrides the 116 mode. ZBUG interprets
49152 as decimal.

Operations
ZBUG will perform many different types of operations for
you. For example. type:

C000+ZST/

and ZBUG goes to memory location C019 (base 16l. the
sum of COOO (base 16) and 25 (base tenl. If you simply
want ZBUG to print the results of this calculation. type:

C000+25T:

On the following pages. we'll use the terms "operands:·
"operators; and "operation:· An operatio:1 is any calcula
tion you want ZBUG to solve. In this operation:
1~2-

"1 " and "2" are the operands. ··+ .. is the operator.

Operands
You may use any of these as operands:
1. ASCII characters
2. Symbols

3. Numbers (in either base B. 10. or 16) - Please note
that ZBUG will recognize integers (whole numbers)
only

6 / USING THE ZBUG CALCULAT OR

Examples:

'A=

prints 4 1, the ASCII code for A.

START=
prints the START address of the sample program. nt will
print UNDEFINED SYMBOL if you don·t have the sample
program assembled in memory.)

150=
prints the hexadecimal equivalent of octal 15.

If you would like your results printed in a different num
bering system. use a different output mode. For example.
get into the 0 10 mode and try all the above examples
again.

Operators
You may use arithmetic. relational. or logical operators.
(Get into the 0 16 mode for the following examples.)

Arithmetic Operators
Addition +
Subtraction
Multiplication •
Division . o Iv.
Modulus . MOD.
Positive +
Negative

Examples:
DONE - START=

prints the length of the sample program (not including the
S\VI at the endl.

9 ,DJV, 2=
prints 4. <ZBUG can perform only integer division.l

9,1100 , 2=
prints 1. the remainder of 9 divided by 2.

1- 2=
prints OFFFF, 65535T. or 177777Q, depending on which
output mode you are in. ZBUG will never calculate a neg
ative number as a result. Instead. it uses a "number cir
cle" which operates on modulus 10000 (hexadecimall:

FFFF 0 1

FFFE 2

FFFD 3

r----.... ----1 I minus
equals 2
FFFF 1

Figure 5. Number Circle Illustration of Memory

22

To understand this number circle, you can use the clock
as an analogy. A clock operates on modulus 12 in the
same way the ZBUG operates on modulus 10000. There
fore, on a clock. 1 :00 minus 2 equals 11:00:

11 :00 0 I : l!llil

1©:00 2:©l!I

9:1!10

f-- v-•-1
• minus

equals 2
11:1!10 1:00

Figure 6. Number Circle Illustration of Clock

Relational Operators
Equals • EOU .
Not Equal . NEO •

3:00

These operators determine whether a relationship is true
or false.

Examples:
5,EOU.S=

prints OFFFF, since the relationship is true. CZBUG will
print 65535T in the 0 10 mode or 1777770 in the 08
mode.l

S,NE0,5=
prints O. since the relationship is false.

Logical Operators
Shift <
Logical ANO . AND .
Inclusive OR . OR .
Exclusive XOR . XOll ,
Complement . NOT.

Logical operators perform b it manipulation on binary
numbers. To understand bit manipulations. see the 6809
assembly language book we referenced in the
introduction.

Examples:

10<2=

shifts 1 O two bits to the left to equal 40. This is the same
operation the 6809 ASL instruction performs.

10<-2=

shifts 10 two bits to the right to equal 4. The ASA instruc
tion also performs this operation.

6.XOR ,5=
prints 3. the Exclusive Or o f 6 and 5. The 6809 EOR
instruction performs this operation.

________________________ F-Deb=M+

Complex Operations
ZBUG will calculate complex operations in this order:

• .orv .. Moo. ,
,ANO,

, •rt , ,XOR , . -
,EOU, , HEO,

You may use parentheses to change this order.

23

Examples:
a+a.0111.2:

The division is performed first.

{4+4) ,0! 11 .2•

The addition is performed first.

a~n.0111.a,
The multiplication is performed first.

p=,.a-=M+ --------------------

7 I Running the Program From BASIC
The finished product of your labors is an assembled,
debugged machine-code program. You can run this pro
gram directly from BASIC as either a stand-alone pro
gram or as a subroutine to your BASIC program.

The steps are:

From the Editor-Assembler:
1. Revise the program so that it will run as a routine and

return to BASIC

2. Assemble the program on tape

From BASIC:
3. load the assembled program with CLOADM
4. Execute the program

• as a stand-alone program using EXEC, or

• as a subroutine to your BASIC program using CLEAR
and USR

1. Revising the Program
Before you can use the program from BASIC. you need
to make a minor change to i t. Change rt to a routine
which, alter executing. will return to BASIC.

In our sample program. the next to the last instruction ;s:
SW!

Load the program into the Editor and change that instruc
tion to:

RTS

Now the program is actually a routine which you can run
from BASIC. (II you want to execute it again from ZBUG.
you'll have to change RTS back to SWI or set a break
point before SWI and never execute it. l

So that your program is the same as ours. be sure that it
has an ORG $3FOO instruction at the beginning of the
program. This is the revised sample program.

ORG $JF00
START LOA •S0f9

LOX •i50©
SCREEN STA ,X+

CMP~~ it$5FF

25

DONE
6NE
RTS
ENO

SCREEN

2. Assembling the Program
Once the program is revised. assemble it to tape with this
command:

A SAMPLE (£ffTfil)

You are now finished with the Editor-Assembler. so you
may start-up the Computer without the EDTASM I ROM
cartridge or enter BASIC with the O command.

3. Loading the Program
To load the program, prepare your recorder and type:

CL•ADM @ TEI{)

Since we inserted an ORG $3FOO instruction in the sam
ple program, you did not need to specify where in mem
ory the program should be loaded. The program will be
loaded at memory locations beginning with 3FOO (dec
imal 161281.

If your program does not have an ORG instruction, your
CLOADM command will need to specify a loading
address. CLOADM&6000 I ENTER), for example. would
load the program into memory locations beginning with
16000.

4. Executing the Program
You can either execute the program as a stand-alone pro
gram or as a subroutine.

As a Stand-Alone Program
Type:

EXEC 1 G 128 !ENTER)

The program w,11 execute and return you to BASIC's OK
prompt.

7 / RUNNING THE PROGRAM FROM BASIC

As a BASIC Subroutine
This is the most popular way to use machine language
routines. When you need to do a task which is too slow
or impossible in BASIC. you can call a machine-code
subroutine. When the task is completed. it will return con
trol to your BASIC program.

Type and RUN this BASIC program:

10 CLEAi< 200, 161'.!8
20 DEF USR0=16128
30 CLS
60 INPUT "PRESS , ENTEi< ' WHEN READ'/"; A$
50 A•USR<!!l
60 !NPUT "!.IANT TQ OQ IT AGAIN"; A~
70 IF A1= "YES" T\iEN 20
RUii /lliITAl

Normally BASIC can use any memory locations from
decimal 1536 to the top ol RAM. This means it could pos
sibly overwrite your machine-code program. Line 10
CLEARs an area of memory from 16128 (which is hex
adecimal 3FOOl to the top of RAM. thereby restricting
BASIC from using this area.

Line 20 defines the originating address of the machine
code program (USA) to be 16128. Line 50 calls the
subroutine.

Passing Parameters
If you want to send some data to your machine-code pro
gram (we can this "passing a parameter,. you can sub
strtute the "parameter" for the 0. For example:

A=USR \Sl

will call the machine-code program and pass the pararr
eter of 5 to it. To get this parameter. your machine-cod:
program will need to have these two instructions:

INTCNV EOU 163EO
JSR t I IHCNVl

which calls a routine called INTCNV. (INTCNV is locate:
in your BASIC ROM. alOng with other routines you c.
use. All the BASIC ROM routines are listed in Appena:
E. l INTCNV will get 5. the parameter in your USR stat,
ment, and load it into the D register.

Your machine-code program can, in turn, return a parar
eter to your BASIC program by loading it in the D regist:
and then executing these instructions:

G!•JA6F EQU iBaFa
JSR [G!VABFJ

GIVABF will set the variable in your USR statement. ,
this case A. equal to the contents of the D register.

For more inlormation on passing parameters. see ;,
6809 assembly language book we referenced in tr,
introduction.

Note: to generate the l cnaracter. type ;SHIFT' (• J.
To generate me 1. rype <SHlrrJ (t).

26

Hints and Tips
• To save memory, use this formula to calculate the
originating address of your program: top of RAM
minus the length of the program On bytes).

8/6809 Assembly Language
This is a brief reference section on programming the
6509 microprocessor. It will not teach you assembly lan
guage proqramming.

Newcomers to assembly language programming will
want to read:
Radio Shack Catalog No. 62-2077
by William Barden Jr.

Others, who want more information on the 6809 for tech
nical applications, will want to read:
MC6809-MC6809E
8 Bit Microprocessor Programming Manual
Motorola. Inc.

The 6809 Microprocessor
The 6809 Microprocessor is produced by Motorola. Inc.
It is an enhanced version of the MC6800 Microproces
sor. Programs written on the 6800 are upward$ compat
ible with the 6809.

Registers
The 6809 Processor contains nine temporary storage
areas which you may use in your program:

UfGIST SCRIPTION ER SIZE DE
I A mulator 1 byte Accu

8 mulator 1 byte Accu
D mulator 2 bytes Accu

DP
cc
PC
X
y
u
s

1 byte
1 byte
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes

I

mbination
nd Bl
Page
ion Code

Program Counter
Index

Co co
of A a
Direct
Condrt

Index
Slack Pointer
Stack Pointer

Table 2. 6809 Registers

Tile A and B registers are for manipulating data and
doing arithmetic calculations. They can each hold one
byte of data. If you like. you can address them as D. a
single two byte register.

29

The DP register is for direct addressing. It will store the
most significant byte of an address. This allows the Pro
cessor to directly access an address with the single,
least significant byte.

The X and Y registers can each hold two bytes of data.
You will use these registers primarily with indexed
addressing.

The PC register stores the address of the next instruc
tion to be executed.

The U and S registers can each hold a two byte address
which points to an entire "stack" of memory. This address
is one plus the top of the stack. For example, if the U reg
ister contains O 155, the stack begins with address 154
and continues downwards.

The processor automatically uses the S register to point
to a stack of memory during subroutine calls and inter
rupts. The U register is solely for your own use. You can
access either of these stacks with the PSH and PUL
instructions or with indexed addressing.

The CC register is for testing conditions and setting
interrupts. It is divided into eight "flags:· Many 6809
operations will ·'set" or ·clear·· one or more of these flags.
Other operations will test to see whether a certain flaq is
set or clear. This is the meaning of each flag, if set:

C CCarryl. bit O an 8-bit arithmetic operation caused
a carry or borrow from bit 7.
V (Overflow). bit 1 an arithmetic operation caused
a signed overflow.

Z (Zero), bit 2 the result of the previous operation is
zero.
N (Negative), bit 3 - the result of the previous oper
ation is a negative number.

I Clnterrupt Request Mask), bit 4 any requests for
interrupts will be disabled.

H CHalf Carry), bit 5 an 8-bit addition operation
caused a carry from bit 3.
F (Fast Interrupt Request Mask), brl 6 any
requests for fast interrupts will be disabled.

B / 6809 ASSEMBLY LANGUAGE

E (Entire Flag), bit 7 all the registers were stacked
during the last interrupt stacking operation. (If clear.
only tile PC and CC registers were stacked).

The Assembly Language
Program

You may use four fields in an assembly language instruc
tion: symbol, command. operand, comment. In this
instruction:
START LDA GETS CHAR

START is the symbol. LDA is the command. #$F9 is the
operand lwe will discuss the meaning of the # and S
signs later). GETS CHAR is the comment.

The comment is purely for your convenience. It is ignored
by !he Assembler.

TheSymboi
You can use symbols to define memory addresses or
data. The above instruction uses START to define ,ts
memory address. Once defined, you can use START as
an operand in other instructions. For example:

BNE START

branches lo the memory address defined by START.

The Assembler stores all the symbols. along with the
addresses or data they define. in a "symbol table:· rather
than as part of :he ··executable program:·

The Command
The command may be either: a "pseudo-operation: or a
6809 instruction.

Pseudo-operations control various !unctions of the
Assembler itself, such as defining labels. telling the
Assembler where to store the executable program, or
storing data in memory. They arc not translated into 6809
machine-code and are not stored with the executable
program. For example:
NArE EOU ~43

defines the symbol NAME as 43. This information is
stored in the symbol table.

Vl-:G $3000

tells the Assembler to begin the executable prograrn at
address 3000,

SYM6QL FCB SG

stores 6 in the current memory address and labels this
address SYMBOL SYMBOL and its correspond ing
address are stored in the symbol table.

30

6809 instructions tell the Microprocessor to carry out an
operation. They arc translated into 6809 machine-code
as "op codes" and stored with the executable program.
For example:

CLllA
tells the Processor to clear the A register. The Assembler
translates this into op-code number 4F and stores it with
the executable program.

All the pseudo-operations and 6809 instructions are
listed at the end of this section.

The Operand
The operand allows you to specify a memory address or
data. For example:

LDD •i3©00
loads register D with 3000. The operand. #$3000, spec
ifies a data constant,

The $ sign indicates that 3000 is a hexadecimal, rather
than decimal number. You must spe:city ticxadecimal and
octal numbers with:

BASE BEFORE NUMBER AFTER NUMBER
HEXADECIMAL
OCTAL _j_

$

'"
H
0

Table 3. Hexadecimal and Octal Operands

For example, the Assembler interprets 17 as decimal 17:
$17 as hexadecimal 17: and 170 as octal 17.

The Assembler treats the operand as part of the 6809
instruction. It stores the operand with the executable
program.

Addressing Modes
In the above example. we used the # sign to tell the
Assembler and the Processor to interpret 3000 as data.
We can specify a different mode of interpretalton by
omitting the # sign:

LOO $300~

which interprets 3000 as an address. The Processor w ill
then load D with the data contained in address 3000 and
3001.

Eacl1 of the 6809 operations allow you to use one to six
addressing modes. These addressing modes tell you
whether an operand is required to carry out the operation
and which mode the Assembler and the Processor will
use in interpreting the operand.

t:u•»=M+ ------------- ----------

1. Inherent Addressing
There is no operand, since the instruction doesn't require
one. For example:

SWl
Interrupts software. (No operand required. l

CLr<A
clears register A. Again. no operand is required. The A
register is part ot the instruction.

2. Immediate Addressing
The operand is data. You must use the # sign to specify
this mode. For example:

ADDA •$30
adds the value 30 to the contents of the A register.

DATA EOU
Lm~ =DATA

loads the value 8004 into the X register

Ct1P,~ =$ l 23ll

compares the contents of register X with the value 1234.

3. Extended Addressing
The operand is an address. This is the default mode of all
operands. (Exception: if the first byte of the operand is
1dent1cal to the direct page, which is 00 on start-up. it will
be d irectly addressed. This is an automatic function of
the Assembler and the Processor. You do not need to be
concerned with it if you're a beginner.> For example:

J SR $ 1:34

jumps lo address 1234.

SPOT EOU $l23a
STA SPOT

stores the contents of register A in address 1234.

If the instruction calls for data, the operand contains the
address where the data is stored.

LOA $J230

does not load register A with 1234. The Processor will
load A with whatever data is in address 1234. 11 06 is
stored in address 1234, register A is loaded with 06.

ADDA $1234

adds whatever data 1s stored in address 1234 to the con
tents of register A.

LDD Sl :3a

loads D, a two-byte register. with the data stored in mem
ory locations 1234 and 1235.

You can use the ;, sign, which is the sign for extended
addressing. to torce this mode. (See "Direct Addressing").

31

Extended Indirect

The operand is an address of an address. This is a vari
ation 01 the extended addressing mode. The I I signs
specify it. (Use , SHJFT: ·• , to produce the I sign and ISHifT'
,~ 1 to produce the 1 sign.l

In understanding this mode. th ink o1 a treasure hunt
game. The first instruction. "Look in the clock:· The clock
contains the second instruction, .. Look in the refrigeralor:·

Examples:
JSR ($1234)

Jumps to the address that is contained in addresses
1234 and 1235. II 1234 contains 06 and 1235 contains
11, the effective address is 0611. The program will jump
lo 0611.
SPOT EOU i !234

STA [S O(IT l

stores the contents of register A in the address contained
in addresses 1234 and 1235.

LOD C$1230l

loads D with the data stored in the address stored in
addresses 1234 and 1235.

This is a good mode o1 addressing to use when calling
ROM routines. For example. the entry address of the
POLCAT routine is contained in address AOOO. There
fore. you can call it with these instructions:
POLCAT EOU

JSR
SA000
CPOLCAT J

If a new version ot ROM puts the entry point in a d ifferent
address. your program will work without any changes.

4. Indexed Addressing
The operand is an index register which points to an
address. The index register may be any of the two byte
registers, including PC. It may be augmented by:

• a constant or register offset
• an autoincrement or autodecrcment of 1 or 2

The comma (.) indicates indexed addressing.

As an example. we'll first load X. a two byte register. with
1234:

LOX •s t :34

We can now access address 1234 through indexed
addressing. This instruction:

STA ,!~

stores the contents of A in address 1234.

STA

B / 6B09 ASSEMBLY LANGUAGE

stores the contents of A in address 1237. which is 1234
- 3. (3 is a constant offset.)

SYMBOL EOU 10
STA SYMB•)L ,X

stores the contents ol A 1n address t 238. which is 1234
r SYMBOL. <SYMBOL is a constant offset.)

LOil •is
5T~ 6,::

stores the contents of A in address 1239 which is 1234
, the contents of B. (8 is a re!'.]ister offset. You may use

either ot the accumulator registers as a register offset.)

STA ,X

This instruction does two tasks: (1 l stores A's contents in
address 1234 <the contents of Xl and then (2l increments
x·s contents by one. so that X will contain 1235.

STA ,X~+

(1 I stores As contents in address 1235 (the current con
tents ol Xl and then (2) increments x·s contents by two to
equal 1237.

" STA ! - - "

(1) decrements the current contents of X by two to equal
1235 (1237 21 and then (2) stores A"s contents in
address 1235.

As we said above. you can use PC as an index register
In this form of addressing. called program counter rela
tive. the offset is interpreted dillcrently. For example:
SV115•L FCB 0

LOA SYMBOL , PC!?

When this program is assembled. the Assembler SUB
TRACTS the contents of the PC register from the offset:

LOA SYMBOL-PCR,PCR

When it is executed, the Processor ADDS the contents
of the PC register to the offset. This causes A to be
loaded with SYMBOL

This appears to be the same as extended addressing.
However. by using program counter relative addressing.
the resulting machine-code program is completely
relocatable.

Indexed Indirect Addressing

The operand 1s an index register which points to an
address ol an address. This is a variation of indexed
addressing. For example. assuming that:
• the X register contains 1234

• address 1234 contains 1 I
• address 1235 contains 23

32

• address 1123 contains 64
this instruction:

LOA (,X J

loads A with 64. (The X register points to the addresses
of the address. This address is storing 64. the required
data.)

STA C ,X)

stores the contents ol A in address 1123. <The X register
points to the addresses. 1234 and 1235. of the eltective
address. 1123.l.

5. Relative Addressing
The Processor interprets the operand as a relative
address. There ,s no sign to indicate this mode. The Pro
cessor automatically uses it for all branching instructions.

For example, if this instruction is localed at address
0580:

BRA sass~
The Processor w,11 convert $0600 to a relative branch of
, 5 (0600 0580).

As we said above. the Processor automatically uses this
mode on all branching instructions. It is invisible to you
unless you gel a BYTE OVERFLOW error, which we'll
discuss below. Because the Processor uses this mode,
you can relocate your program in memory without chang
ing any of the branching instructions.

The BYTE OVERFLOW error means that the relative
branch is outside lhe range of 128 to + 127. You will
have to use a long branching instruction instead. For
example:

LBR/\ S0G00

allows a relative branching range ot 32768 to
+ 32767,

6. Direct Addressing
In this mode. the operand is half of an address. The other
half of the address is the contents of the DP register:

ADORESS
DP REGISTER

= (most slgniflc'1nt
byte)

OPERAND
(least significant

byte)

Figure 7. Direct Addressing

The Assembler and the Processor use this mode auto•
matically whenever they approach an operand whose
first byte is what they assume to bee "direct page· (the
contents of the OP register). Until you change the direct
page. they both assume it is 00.

________________________ ___.F-DrA=M+

For example, both of these instructions:
JSR S001 5
JSR S I S

cause a jump to address 0015. In both cases. the Assem
bler uses only 15 as the operand, not 00. When the Pro
cessor executes them. it will get the 00 portion from the
DP register and combine it with 15. (On start-up. OP con
tains O. as do all the other registers.)

Because of direct addressing. all operands beginn ing
with 00, the direct page, consume less room in memory
and run quicker. If most of your operands begin with 12.
you might want to make 12 the direct page.

To do this you first need to tell the Assembler what you
arc doing by putting a SETOP pseudo-operation in your
program:

SETDP st:

This tells the Assembler to drop the 12 from all operands
beginning with 12. That is. the Assembler will assemble
the operand "1234'' as simply ·34:·

Then you must load the DP register with 12. Since you

33

can use LO only with the accumulator registers, you will
have to load OP in a round-about manner:

LDB •S12
TFR B ,OP

Now the direct page is 12, rather than 00. The Processor
will execute all operands beginning with 12 <rather than
OOl in an efficient. direct manner.

The Assembler uses direct addressing on all operands
whose first byte is the same as the direct page. You can
be sure that the Assembler uses it or help document your
program by using the • sign, which is the sign for direct
addressing. For example, if the direct page is 12:

J SR (SlS

jumps to address 1215. This instruction documents that
the Processor will use direct addressing.

Likewise, you might want to use the • sign to force
extended addressing. For example:

JSR >l l2 15

jumps to address 1215. The Assembler and Processor
use both bytes of the operand.

________________________ __.F-D ·6~M+

9 / Assembler Pseudo Operations
This is a listing o f all the pseudo operations and the syn
taxes you should use in typing them. Addressing modes
do not apply to pseudo operations.

Definition of Terms
symbol
any string one to six characters long, typed in the symbol
field.

expression
any expression typed in the operand field. See Appendix
C, ZBUG commands. for a dclinit ion of vaiirJ
expressions.

Pseudo Operations
END
END expression

Tells the Assembler to quit assembling the program. You
can use the optional expression to specify the start
address ol the program. For example:
END $JF00

tells the ,C..ssembler to quit assembling the program and
to store its start address, 3FOO, on tape. When you
CLOADM the program, you will not need to specify the
start address.

EOU
symbol EOU expression

Equates a symbol to an expression. For example:
LOOP, EQU $JF00

causes LOOP 1 to equal $3FOO. You may use LOOP 1 as
data or an address.

EQU is helpful for setting the values ol constants. You
may use it anywhere in your program.

FCB
symbol FCB expression
Stores an expression into memory at the current
address. The symbol is op!ional. The expression may be

35

one byte long. For example:
DATA FCB $33

stores 33 in address DATA.

DATA2 FCB s 3J+CCIUNT

stores 33 ~ COUNT in address DATA2.

FCC
symbol FCC delimiter string delimiter
Stores an ASCII string into memory beginning with the
current address. The syinbol is optional. The deliiniter
may be any cha~acter. For example:

TAllL£ FCC !THIS i5 A STR!r-JG/

writes the ASCII codes for THIS IS A STRING in memory
locations beginning with TABLE.

FOB
symbol FOB expression
Stores an expression into memory beginning at the cur
rnnt address. The syn1bol is optional. The expression can
be two byies long. For example:
DAT~ FD8 $3322

stores 3322 in address DATA and DATA + 1,

ORG
ORG expression

tells the Assembler to originate the program beginning
with expression. For example:
ORG $JF00

causes the assembler to begin assembling the program
at address $3FOO.

You may put more than one ORG command in a program,
When the Assembler arrives at the new ORG command.
it wil l begin locat ing p rogram code at t he new
expression.

RMB
RMB expression
Reserves expression bytes o f memory tor data. For
example:

DATA RMB $06

reserves 6 bytes for data beginning at address DATA.

9 / ASSEMBLER PSEUDO OPERATIONS

SET
symbol SET expression

Sets symbol to be equal to expression. You may use SET
to reset the symbol elsewhere in the program. For
example:

SYM8!)L SET $3500

sets SYMBOL equal to 3500. Later in the program. you
may reset SYMBOL:
SYMBOL SET JQ3C0

now SYMBOL equals 4300.

36

SETDP
SETOP expression

Tells the Assembler that the direct page will be expres
sion. Example:
SET DP S20

tells the Assembler to set the direct page to S20. You
must also load the DP register with $20. See "Direct
Addressing~ tor more information.

10 / 6809 Instruction Set

Definition of Terms
Source Forms:
This shows all the possible variations you can use with
the instruction. Table 4 gives the meaning of all the nota
tions we use. The notations in italics represent values
you can supply.

For example. the BEQ instruction has two source forms.
BEQ dd allows you to use these instructions:
8EO $08 BEO $FF BEO $A0

Whereas LBEQ DODO allows you these:
LBEO $C000 LBEO $FFFF

Operation:
This uses shorthand notation to show exactly what the
instruction does. step by step. The meaning of all the
codes are also in Table 4.

37

For example, the BEQ operation does this:
"If. (but only ifJ. the zero flag is set. branch to
the location indicated by the program counter
plus the value of the 8-bit offset:·

Condition Codes:
This shows which of the flags in the CC register are
affected by the instruction, if any. As you'll note, BEQ
does not set or c lear any of the flags.

Description:
This is an overall description, ,n English. of what the
instruction does.

Addressing Mode:
This tells you which addressing modes you may use with
the instruction. BEO allows only the Relative addressing
mode.

10 / 6809 INSTRUCTION SET

ABBREVIATION MEANING ABBREVIATION MEANING
ACCAorA Accumulator A. Us or U User stack pointer.
ACCB or B Accumulator B. p A memory location with immediate,
ACCA:ACCB or D Accumulator D. direct, extended. and indexed
ACCX Either accumulator A or addressing modes.

accumulator 8. Q A read-write-modify argument with
CCR or CC Condition code register. direct. extended and indexed
OPR or OP Direct page register addressing modes.
EA Effective address. () The data pointed to by the enclosed
IFF If and only if. Ct 6 bit address).
IXorX Index register X. dd 8-bit branct, offset.
IY or Y Index register Y. DODD 16-bit offset.
LSN Least significant nibble. # Immediate value follows.
M Memory location, $ Hexadecimal value follows.
Ml Memory immediate. I I Indirection,
MSN Most significant nibble. Indicates indexed addressing.
PC Program counter. Is transferred to.
A A register before the op,:r,,tion. Boolean AND.
A' A register after the operation. V Boolean OR.
TEMP A temparary storage location. 0 Boolean Exclusive OR (XORJ.
xxH Most significant byte of any Boolean NOT.

location.

I :~
Concatination.

XXL Least significant byte of ,~ Arithmetic plus.
location Atithmetic minus.

Spor S Hardware stack pointer. Atithmetic multiply.

Table 4. Notations and Codes

38

________________________ __.F.D•b-=M+

Add Accumulator B
into Index Register X
Sour" Form: A8X
Operation: I)(·. IX • ACCB

Add with Carry into Register
Source Forms.: AOCA P, 1\0CB P
Opara~: A'• RI M IC
Condition Codes:

Ii Sc1 if\'\ h.111.curty 1$!'>Qnerated: doored otherwi::a
N Sci if rho~ i$ f\CO,,"MJVP.; de.-ved otl>etv/\SP.
l Sor 1f thC't result -s: zero. cleated olhofwisc

Add Memory into Register
Soura, Fo,ms: ADOA P. A008 P
Oporation; R , R .. M
ConditiOil Cod&s:

" Sc, ,fa ha!l-c1.1fty is OQneralt.~; CIOllred othcrwl$C

" Set ,, 1"<' rusull ,s: ~•Inv. dear(!d Qlherwi:.c.
z Se! 1t !tit) rr.su'l 1S 2:CfO, ctear£ld Ot!'IW'Wi:.e.

Add Memory into Register
Source Form: AOOD P
Operation: A', A I MM 1 1
Condition Codes:

H NntallQCI.CO

" Set ii ~ result is tK."C-lltve: Cie.Yt'U OChCt'WlS(lo
l Set il the rcsvlt t$:.mro; cloored a1t1crmsc

Logical AND Memory
into Register
Source Forms: ANDA ?, ANOB P
Operation: A'· A \ v.
Condition Code~

H N.oratfcacct
N Se; if lh(I ru~ult IS OC(l~lwe, c:!e:irt'd t)[''ltJrWi$1"!

Logical AND Immediate Memory
into Condition Code Register
Sourec Form: ANOCC liM
Operation: R· • A \ UJ
Condition COClea: Affi!ciOO 3CCQfCil'IQ lo tl'lU 00(.'{;)ll()n._

Arithmetic Shift Left
Source Forms: ASL 0: A.SU\, ASLB

Operation: C· 1 I I I I I I !7 -o
b7 . bO

Cond1tionCodet.:

" U"'ldcll'IOC
N SP.t ii tho resuh is nLogauve. denrco ottic<wisc
z Se1 ii the tcsult is :mo: Cleared otht"IVnSC.

•

Condition Codes: N-m tJ'h,!CIOO.
Oe.scriptlon: Add the 8·b1 u,)sigll(td v~ue in nor.um.Jlatot B
imoindQx.~(S,(er X
Addreulng MO<le: fntterent.

" Set if an overflow Is oenor.uect; de;m:,a: otherwise
C Set ii R cmry tS gC!lcrDtOCI; cle.ned otherwise

Ocsctfptlon: Adds lhO COOlC!llS of lhe C (cany) b'I ano the
memory ~e flto an S.-brt occurnt: .. ·n~·
Addre-a.stng Modes: lmmcdr~uc. Extcncfect Dlroct. lrtdexed

V Set if~ ovorttow is gcnor~tec:t. Qf!:u-fld ollter111se,
C Set 1f a cru-1)• ,s gonerJmd; <:1e.1red o1horwioo.

DescrlpUon: Adels the mcmO!Y byto ,nto an 8•011

""""'"'-Addressing Modes: lmmed8hr. £xtendcct Oircc.t fncfe)l.00

V Sot 11 an ovol'flow is genoratod: ctearoc: othCtVltSC.
C Set ~, a CW',Y 1$ genermrd: c lc'!'med othcrwistJ

Oe.scrlptlon: Adds th~ 16..t>it memory valUP. into th!! 16·bll

"'°"""'"""· Addre,.sln,g Modc:s: lrnmed at-e. Ex1enctect D1rr1C,; rnooxoc,

z 5'!-1 1f the CMUII IS ~ . dQ;:,rnd 01herw1sc.
V Alw;:ws cl~1t(."CI
C Ne; affected

Des.crip!lon: Pcr10l'ffl$. :he tog1cal ANO opemtlon belwcen
rhe con1u,1t$ ol an aoc:unufalor .3f)d lhe cont('r'IIS of ~
lcx;.ibQn M :trXI the ~.ull is Sltx'l!d in the acx:um.ir;110r.
Addressing Medes: lmmediam; U.1,-.nded. Cllroot, Indexed.

OescrlpUon: PerfOlm:-: n klgi~I ANO betwoon tho oor<1,11on
oode mgir;tcr ond tne irnmed!<'.!IC: byia speQ:fied 1.11 Ille
.nstruc:1ion :.nd olaoco lhe resull in 1hc com::rtion OOdo
rooiMcr
Addressing Mode: lmmcdtate.

V Loaded with l"'8 result of tho <utcluSl'IO OR of ::iits
S,;)(3"1d seven Ol lhe ong,nul bDCf:lf\O

C Lo3::icd 'Mth t>i1 &e\'en ol the 011g1na! 000,:::md,
OescripUon; Shifts au !:Ms of thP. ope,-;ni one Dl3cc ;o lhc
feit. 8i1 JCJ1' tS liO:IOOC win a -re,o. Sit seven 15 stltlted into
the C (C3rry} bit.
Adctresslng Modes: Inherent: Extended: Oimct: lndoxed

39

AB \/
I\

ADC

A[lD
(8-B-it)

ADD
(16 - Bit)

A t-.J D

ASL

10 / 6809 INSTRUCTION SET

ASR Arithmetic Shift Right
Source Forms: ASA 0 . ASRA: ASA8

z Set ,t the rcsu11 is .wro: cle(lre(i otherwtSO.

~ OperntJon: I I I I I I l I ·C V No-1 offccted
C loaded witn ?:lit WrO O' Lhe origin.al OPCl'Md

bl bO Description: Shifts a!I b is 01 the opP,ranci one oiacc Lo the
Condition Codes; right. Sit seven is held constant. Bit zero is shifted into the

H Undefined c Ccany> oit.
N Se! if !he tCS1.:ll 1s l'lag.1tive; cleared othC,•wise Addressing MOdM: lnl11m:mt Extended. O,rcct: Indexed•

B-CC Branch on Carry Clear Condi tion Codes: Not affected.
Source Forms : BCC do L8 CC ODDO Description: Tests rhc stone 011t~ c (carry) nit and cautc-s a
Ope.ration: tira~h if 11 is dear

TE~P. Ml Addressing M Odc: Rctntwo.
lrFC 0 then PC'• re + T0.,1P Comments: Eaul\';Jlem lo BHS dd; LBHS ODDO

BCS Branch on Carry Set
Condition Codes: Nol n'tectf!O

Source Forms: BCS do'. LBCS ODDO Ocscriplion: Tests :he sl,'3IP. ol 1he C IC;)ffy) bll ,1r-d crn.JSP.~ n
Oporation: l)(anch 11 1l 1s set.

re .AP- Ml Addressing Mode: AAl:'ltive
11-FC 1 lhen PC·· PC • TEMP Comments: Equ-valenl to BLO od LBLO OOOD.

BEQ Branch on Equal
Source fofms: OCQ 1..ti, lBtO DODD Description: T~,s the Sinte of the 2 (lOfO) bit and causes a
Operation: br.iJ"tCh if 11 ii; r,e:. When used aftcf a sub:ra-..::t or comp;ire

TEMP~ Ml oi:erntion, 1h s instrvclion will btaOC!l 11 lhl! comp.'!ff!d values.
IFF Z 1 thon PC' , ~ 1 TEMP signed or ur1signf'd. WP.re exacuv me same.

Condition Code$.; Not O.ltL'clad Acldres-sing Mode: Reiatrvc

BGE Branch on Greater than Description: Couscs a branch i i the N Cnenotw~> bit and 1M

or Equal to Zero V Coverflo'II) bit are Otl tlQr both se1 or both Clt!31 l ha l is,
brnnch f the sign- o! a \'al!d twos oomp!emc:,, I result is, or

Souree Fomi$; BG(dd: LBGE DODD would be. oos1twc. WIK•11 used ,1'1w ,1 svl>ttDCt or compare
Oper:ation: ooerahon on twos comp.-emenf v~11ues.. thiS 1r'IShuction will

TLVcP, Ml O'ancl"t ,1 lhe (Cti sler vms gm.ale, than o· cuual to !he
IFF IN •? VI O then PC'. PC -TEMP mcmO!"V ooornr-d.

Condition Codes: Nol <!tfocted AdCl fC$S-ing Mode: AP.lni1\'e

BGT Branch on Greater
Source Forms: BGT r.d: LBGT ODDO
Operation: Z lzcro) brl IS CIC.l(. In Other words. brnnch if lhe sia-n Cl O

TEMP- Ml 11alxJ lwt-'S 1.:o·i1;J!etT1enl resull is. (V wovlc be. oosi1wc uod
IFF Z \ IN • .. VJ o lhcn PC', PC I TEMP -'Y.lt rc-o When used after:! ~l;b1r3el or compafo 0001cu1011

Condition Cooe..s: No1 aftce100. on lwu:-; corr:,leTi.?nl Vflh.l'f!s, lhis ;,,stn.icti():l wdl bianth ii the
De$Criptlon: C3u$CS a b,·;11)ch JI thP. N (nP.g_ilive> bit and reg sler ,w1s g1e;1ter than lhe memor~• operand
V <overflew,) b11 arc c11h01 00th sel or both ~IP;'.lr and file Addressing Mode: Rr.l.:,l«m

BHI Branch if Higher
Source Forms: SHI rkt, LBHI ODDO
Ope,atlon: subt:tact or compo,e OQO<ation on vns,gncd tliti.ary values.

Te.i P, Ml thi~ instnict:,on ,,rn brunch I the regimer was hgher th.'-ln rhe
IFF ICvZI 0{hen PC'· PC , TEMP memory O;'.}C(illld.

Condition Cooc-s: Not ~fleeted Aeldre..s$ing Mode: 9elati\'e
Description: Couscs a tiranch 11 the pre•1iix,s operatl()(I Comments: Gcne!'ally not useful a~CI INC'OEC. LO TST
caused nei1hl.1r a carry nor~ zero resul! When useo :ifter a .:.Yid TST1C l RCOM 1ns1mc1ions

40

________________________ __.F-Deb=M+

Branch if Higher or Same m unsigned binary values. lhis instruction w1ll bf'~!'ld'l ii the
Source Forms: BHS dd: LBHS DODD r~ister WR:<. higher L'mn or the samt? at; tho memory
Operation: operano..

TEMP• M l Addressing Mode: Relative
IFFC - 0 then PC:~ PC 1 Ml Comments: This is a duplicate asseml:>'y-language

Condition Codes: Not affected. mnerr,onic ior the sing!.e nmchine 1.nstruction BCC. Generally
Descrlptlon: Tes-ts the state ol ihe C Cc::arryl l:ll nnd causes a not useful Rft?.r INC/DEC. LDiST. and TST'CLA'COM
brlnch ,r it 1s de1u. \'VhP.n osed after a subtract or compare instn.ictiCYls

Bit Test V A!w:;iys cleared
C t\'<11 affec::ed.

Source Form: BIT P Ocs.cflpllon: Perlorm.-. the logical AND ol the conlmi ls ol
Opcl'aHon: TEMP· R \ M ~cumulator A or B ~::l the oontenls of n--emory location M
Condi tion COdes: one mocll'ies- ;he oonc:1i1ion codes accordingly. TI'l8 contonis

B· IT

H Not a l!OCICCI o~ ~cumulOtor A or 6 and memory location M am 1101
N Se1 ii the (CSull is neoo.11ve: cienrcc 01hC1W100 auoctect
z Set ii the resu11 ,s w,o: CiCorcd othcrw,sc Addrbssing MOdes.: lmmcdime. Extended; £)!sect; Indexed.

Branch on Less than Description: Causes a b,anct'I rl thO exclusive OR ol th~ N

or Equal to Zero (OOQahVO) and V (OvCr110w) bits 1$ 1 01 if lh8 2 (L(r.fO) bit 1$

seL Thut IS. branch if lhc sign 01 a vahd twos Cc.x'l'lPIC-l'll(W I
Soorce Forms: 8Lf dd: L8L[0000 result is. or would be. ooontwo. When used allei .:i subtrocl

BLE
Operation: o, c(ll'Yl(larc opcrobon on twos ccmp1crncn1 values. tll1S

TEMP, UI 11)Slruc11011 wi11 bra-'ICh ii lhO registL'f Wi'.1$ ll;tSS thau 0.T cu-ua!
IFf ZvlN •~•VI• I then pe·. PC I TEMP to the memory oP(W',u"r.t

Condition Codes: Nol nlfoctOO. Addressing Mode: Rnlative.

Branch on Lower br'aoch 11 it tS set. When used after a sutltroct or comp._1re on
ur,s,gr.eC! brnary volucs this in:struct;on will bn:mch if thn

Source Forms: BLO dd: LSLO 0000 rcg1stc,, was io-.-."Cr than the memory operand
Operation: Addressing MOdc: R~at1'/0

TEMP• Ml Commcn1$: This 1s a duplicate assembly·langu.)ne

BL(i

IFF C- 1 then PC • PC • TEtv1P mnemonic f0t tnc sino1e machtne instruction BCS. Genemlly
Condition Codes: Not affected. no1 uselul after INC10EC. LO:Sl ~C TST·CLR1COM
Oe$Cliptlon: l est& the st.'tte of the C Cc.•nry) bit ,'lnd causes n instNChCf'\S

Branch on Lower or Same causad 1.1ithc1 iJ co,i,• or a 2c,o rcsut1 Whoo used atlc, o
Source Forms: BLS dd: LBLS 0000 subtract or c:ompa,e opera11on on unsigflO'J btn.:iry value~

BLS
Operatlon: this instruction will branch if e,o rE'Jg1s1er was IOw('f' than Ct

TEMP, UI the sr1me as the memory ope,ana
IFf(CvZl 1 lhf!n PC'· PC ! TEtvlP Addressing Mode: Rltlaliva.

Condition Codes: Not ilffec100. Comments: Gl!nera!ly nol u-scfuf al!c-1 INC/DCC. LO Sl. and
OCscrtptlon: Cnuse~ a bmn::h if !he pccvious oPOf'OhQe'I TST:'Ct.R1COM 11'1Structions.

Branch on Less than Zero
Source Focm.s: BLT dd; LBLT DODD N Cncgoti-.·el oc V <o•.-erliOw) b,1s is set T'Kl11s. or;;neh I !ho
Ope-rotlon: sign of a \'Ohd 1wos como1omcn1 rcsull is. Of would bo.

T(MP• Ml negative When used aftOr' a sublr.:ie1 0< Ccm(Jate O(IL-ration

BLT
IFF IN•'- Vl 1 then PC'· PC • TEMP on twos complcmoot b11X11)' ... 01ucs.. u,,s il'lst,uchCn will

Condition Code$-: Not ~«ected be'aoch i! the reglSlcr was toss lhon Inc: mcr-.ory ocer.ind
Ocsc,iplion: Gooses a tir::mch it eithP.r, but not bolh, or lhO Addr-o5Sing Modo: ROlalMJ.

Branch on Minus causes a brnnch if se1. Thai 1&, branch if the s,on of t'le twos
Source Forms: BMI dd; LBMI 0000 complement rf!Sl.1!1 is negmive

Bt·1 I
Operetlon: Addressing Mode:: Relative

TEMP• Ml Comment$: When used ottCf an ooermion oo siQncd o,norv
IFFN 1 then PC'· PC ; TEM P v3!ues this ,ns1ruction will l)r3nCh 1f The ,est.Ill ,s m,ous It >S

Condition Code.s: Not attec:1od. nenera!ly preferred 10 tise ;he L8LT 1nstrue1,on altCf signed
OoS,C,rlpnon: Tests 1he stote of the N Cnegmi·.•n> hit ,'lnrt operations

41

1 0 / 6B09 INS T R U C TION SET

Bt~E

B-PL

BRA

BRt~

BSR

Bl.JC

C t·1 F'
{ o B . ,
,u- ;ltJ

Branch Not Equal
Source Form$; ONE dd. LBNE DODD
Operation:

TEMP• Ml
IFFZ-OlhunPC-, PC1 TCMP

Condition Codes: Not afl~cttXI.

Branch on Plus
Source Forms: BPL dd: L8PL DDOD
Operation:

TEMP• l,;11
IFFN - 0 thenP(> PC I T~P

Condition Codes: Not afh'!c:ted.
Oescrlpllon: Tesls the :<;Ir.le of lnA N {negRIM'l) t,,1 :md

Branch Always
Source Forms: BRA dd: LBRA ODDO
Operation:

TEMP• Ml
re·. PC . Tl:',' p

Branch Never
Source Forms: BfiN c.!d; LBAN D000
Operation: TEMP• Mi
Condition Codes: Not ;ilfocied

Branch to Subroutine
Source Form.$: OSR dd. LBSR DODD
Operation:

TEMP• Ml
sp·. SP 1. CSPJ• PCL
SP', SP 1. CSP/, PCH
PC"· PC I TEMP

Branch on Overflow Clear
Source Forms: BVC dd: LBVC DODD
Opc~tlon:

TE~.,p. Ml
IFFV Othon PC·· PC· TEMP

Cood1tion Codes: Not affCCled

Compare Memory from Register
Source Forms: GMPA. P: CMPB P
Operation: TEMP• n M
Condition Codes:

H Unciefllf'IP,d.
N SP.1 if the rnsutt is riet).'lli'.-C: c100,oo olhcrwise
z Se1 if t~ rnsu11 is zero: c loored olhcn.vise

42

Description: Tests l."la sta:e ol tt-e z Cxerol bit Mr.' rouses;:,
bronco 11 II is c1ca1 \'.'l''llin us-Jd al1er a suhtrnci or corntiJtc
OPOfahon on ony b11)ury \'alues.. this irstruct.-0n will l)(aod'l
if l!'IC rcgistc, ,.s. 01 would be. r..o: equn! to the memory
oocrano
Addressing Mode: Relative

r,;iuses;., br;.,nch if t is r.lear. Tt·,., 1 i:s. bronch ii the s,qn
oi l"le twos coml)emenl rnsult as pos:h,e.
Addressing Mocte: nciawv·e
Comment$: When used after .in operation on signco bin~ry
va\ucs. this instruction wilt tiranch ,1 the result <ooss1l>'v
,n•,ahC> is positive i t ,s gcncmuy prc1crted to u':lt:- lho t;;.Gt:.
1ns1n.1c1'00 oftc,- signed opcratlOf'ls

Condition Codes: Not affAcie!1
Oescttptlon: causes an unconditicna. br:mc:h
Adelresslng Mode: Rel.:;twe.

l>Eiscription: Ooos not c:ause a hmnch This instruction is
essentially 1l no opeml.on, but hllS a brt panern !001catly
related to brc:nch (llwr,ys.
Addressing Mode: Rel.."ltive

Condition Codes: Not r1Hec1ed.
Description: Thr. program ~O'Jntcr is ovshed onto the slack..
The progran c.01.mt?.r is then loo::led vi"l"l tric Sut"\ of !he
pcogrri.m counter ;)nd the offsot.
Addressing Mode: R01at1vc
Comments: A rc1um 'rom subfOut1no tRTS> instruc:lton is
used to tc·.•crsc tnls process ooo musl be lhe 1w,: ins1ruc1ion
cxecv1cd in a sutlfOulrno

Description: Tests the state o! ltie v lovarl!ow> bit .'Ind
cauSE-~s <! branch if 1 is clear TM1 is. brnnc:h if the twos
complement tesvtt was vahel v~n used aher ::m ooc,alJOr'l
on twos c;omp.lement binaiy va!uQS, this mstrvction w1tl
branch if !here was no ovori'ow.
Addressing Mode: Ac10:iv~.

V Set if an overflow 1s 9eoe1a1L'd; cieart:.-a otherwise.
C Se! if a bo:row is generated: cll"?asOO otherwise_

Description: Compaies lhe c:ootenls ol mernory location
to ;he contents of the s;::eciliE!'Ci regisler and sets the
;;pproprime c:ondition codes. NP.f:fher rriemory k!cation M nor
the ~PAr.i~ied register is modified. The c;irry Rag rnpresr.nls:.;
borrow :-md i::. se1 to lhP. inver.=;e of the re!'.uhing bin.;3ry carry
Addressing Modes: lmmOOime; Extended; Direr:t; Indexer!

________________________ ___.F-D·A-=M+

Compare Memory from Register
Sou,ce Forms: CMPO f'; CMPX P: CMPY P: CMPU I-':

CMPSP
Operation: TEMP• A MW, • l
Condition Codes:

H Not ~Hcctcct
N Set if the rcsu11 ,s negative: cleared 01herwi~•P.
z Set if the ,csun is zero; clNvecl omo,'wist?.
V Set ,f on over11ow is generouxt: clc-3fod otherwise

Complement
Source Form$: COM 0. COMA: COMB
Operation: lvf • 0 i M
Condition Cooos:

H Not affected.
N Set ii the rn::;u!I is negnt,ve: cleared otherv11sc.
Z Se1 ii the resul1 is 1ero: cleared othCfW1S-O.
V A!woys cluarnd
C NwoySSCL

Clear CC bits and Wait
for Interrupt
Source form: CWAI #$XX IE IF IH I I IN I ZIV IC I
Operation:

CCR, CCR ,\ Ml (Poss!bly dOO(ma.~}
Sci E (cn1ke state save-dJ
SP', SP 1, CSPJ, PCL
SP', SP 1. CSPJ• PCH
SP', SP 1, CSPJ, USL
SP', SP I, CSPJ• USH
SP' - SP 1, (SP)- IYL
SP'~SP 1, CSPJ- IYH
SP' · SP 1. CSP>· IXL
SP', SP I. fSP>· IXH
SP , SP I. ISP>· DPR
SP•, SP I. (SPJ, ACCB
SP , SP 1. (SPJ, ACCA
SP', SP 1. (SP>- ca:!

Condition Codes: Affected ,'Y.:r:('rding to the opero1ion

Decimal Addition Adjust
Source Form: OAA
Operation: ACCA ·. ACC,A • CF (M$N):CF<LSN)
where CF is a Correefion Foctor. as follows. U)C! CF tor each
nibble (BCD> digi l is cfctc~Cd sepa,atetv. and is eithm
60t0.
Least Signi ficant N ibb-le
CF(lSN) 6 IFF O C 1

or 2) LSN ·9
Moat Significant N ibble CRMSNJ-6 IFF 1l C I

or2>MSN ·9
or 3) MSN ·8 andlSN ·9

Condition Codes:
H Not affected

C Set !I 3 bOfroW i~ !";OOOr"dled; OOarcd O!h'!r11ise.
Oescrfpttoo: Compnrns the 16--bll c:onten1s ol the
concaienaled memory IOC.lL>Ons M:rv1 -t I to the conten1s
o! t"IC soeciliod rngis;et and se1s the approp;i£lle oonclit1on
oodes, Ncith~s the memory locations n0t the spec::ified
rngister is modified unless autoincrement or autodectCO'lOnl
:ire uscef. The carry flng re;:iresents .J borr-0·..., and is set to
the inverse Ol the resu'bng binary cony,
AdClte$$/ng Mode$! lmmOdiate; Extended: Direct Indexed.

Description: Repaaces the contcnl-s of memory IOC3tcon M
Of aco.iniul;itor A or B with its &ogical COfnJ)lement. When
opcratitg on unsigned ... aiuos. IXII>• BED and 8NE ::imndles
can be expecied to behave oroperly lollowinQ 3 COM
if!Struc1ion. When operating on lwos oompleincm ,..i.llu&s.
an signed hr~nches arc avail::t:Jle.
Addres.sing Mo00$: lnhefcnt Exten~d; Ouoct Indexed.

DescrlpUon: This instruction ANDs an immedia!c by1c with
the cond-.t,oo 0000 register which may dear the intc,rupL
mask bits I and F'. stacks the er.tire machine swtc on the
IK1rdwaro stack and then looks for an inlCft uPL WhM a
no,.maskod 1ntmrupt occurs. no further mochma state
lntOl'm.1110n r'll!P.d be s.1wec:f before vectoring to thO il'lte,rup!
handling routine. Thi5 mstrvcllon rcP1acOd lhlt MCOSOO Cll
WAJ seqo,mce. Out does not place !he buses in a hig.h•
wnpedance sl,;:te. A Ffffi5 Cfos1 intol'fupt request) may P.nte,
11s interruµt h;mc:fter with its c,,tko 1nach11'le slafe s."lved. The
Fm <reiurn from interrvpO instruction wilf automatically retum
the entire machine state ::iftcr testing Lh~ E (entirn) bit of the
reoo\'ered condition codo t egis.ter.
Addres.slng MOdCt: Immediate.
Comments: Tho foOowil'lg immediate values will have the
followi~ (OSUl!S:

FF coabS8 nerther
EF Ona.hie IRO
BF' enab&P. FIRO
AF - enAble both

N Set rf the resull is negative: clO~(Kj othP.rwise
Z Set ti the result is wro; deOfOd otherwise
V Undefined.
C Se1 ii a carry Is gcncra1ed 0t rf the c:c1rry bft was set

before 1he operation: c loored olherwise.
Description: The scauonc~ ol a single-byte add instruction
on acc1p•4..dator A (ci1he, ADDA or ADCA) and a icuowing
decimai OOC! oon adiust instn.x:tic.x, res1Jlts in a BCO addition
'Mth an Q:Pprooooto carry bet Both values to be added must
be #l oropor BCD Imm (each nibble such th.at: 0 1 nibble · , 9l
Mlllitlle.-l)(eciSfOn addltion must add the carry g~erl'lted by
this dccim.-:11 addiiion odusl into lhC OOxl higher Cig.it during
the add opemlion (ADCA) imm0d1a1e1y prior to the next
dcor'llal a:JdililYI <)djvst.
Addre-ssing Mode: Inherent

43

C~1P
(16-Bit)

C(l~1

ci~A I

DAA

10 / 6B09 INSTRUCTION SET

.. -. e· i_ ~ • \I_I-:

DEC

E(lR

E \:' l""' u

I r~c

Jr1P

lr-r:, \,,., .::, t\

LD
i t)

Decrement
Source Forms: OCC O; OCCA: DCCB
Operation: M., M I
Condi tion Codes :

H Not aflactltd.
N Se! if !he result is negative-: duarl!d otherwise.
z Set if the a'?Stllt 1s LI.No: cleared otherNise.
V Se! if the origJKtl opemnd was 10.1000:::0 cleared

otherwise.

Exclusive OR
Source Forms: E.ORA P. [ORB P
Operation: A' • R•=•M
Condition Codes:

H Not attectud.
N SP.I if the! rosult ,s r'l(iga;i\'O-: dc::irccs otherwise

Exchange Registers
Source Fonn: EXG R; .R2
Operation: Al , ,A2
Condition Codes: Nol afh::Cl(,'ll Cu-ilL>ss one of the mgislf!f'S
!$ tllU co,xh1,on COdO l (l9'1Sl(rr)
Description: Lxchar,ges -dala bt:rtween lwo designated
r,,g,st~s. Sits 3-0 al Lil~ DOSlbylu tl(!fi1m one rngister. while
bllS 7.4 d(!!iOO Iha olh!-.!I. as lo!iows;

0000 A:8 1000 - A
ooo, X 1001 B

Increment
Source Forms: INC O; INCA INCB
Operation: W' •- M 1 1
Condition Codes:

H Not ntteded.
N Sf!l 1.f thP- rP.su'.1 is neoati"e: c loorocl otherwise
z Set rt the result is zero: c lrorcd otherwise
V $Al t the original ,operand ,,.M O 111 111 1;

df!:ire.1 oth!'!rwi~e

Jump
Source Form: JMP EA
Operation; PC·· EA
Condition Codes.: Not affected.

Jump to Subroutine
Source Form: JSR £A
Operation:

SP'-SP 1, CSP), PCL
SP' • SP 1, CSPl• PCH
PC'· EA

Load Register from Memory
Sourc e Forms: LOA P: LOB P
Opel\ltlon: R·. M
Condition COde.s;

H Not aucctcd

" Set ti the lonooa data 1:. 0~;11:ve: cleared
olhu1wisu

44

C Not o.ttcctcd,
Oe-&crlptlon: S1:btract one Item the opcf3nct Tt1c carry bit
is no1 affected. thus ollovMQ this ,nstruct,on to be used as
0 IOOP CQFJfltl}f ,o mult1PIC-pt'CCZSIQ(l oomou1a11un..-.. Whl!n
oocroMg on unsigned values. only SEO ana 8NC branches
con be Cl(OCClCd to behave- conS1Stcntly. Wl'ICl"I operabng on
twos CO."/"(l!omcn1 values. au signed branches am av-<111.ible.
Addressing Modes: h'1hOf()nt: LxtOn;Jatl Direct Index.et!.

z Set ii the msull is zero; cle;ued othf!rwise
V Always clearec...
C No1 :;1ffecter!

Description: ThP. contenls ol memory locaton M s
exclusive ORed into .1n B•bit reg,sler.
AO(tressing Modes: lmmf!dime; Extend!:!d; Oirnct, Indexed.

0010 y 1010 - CCR
con us 101T - OPR
0100 SP 1100 Undefinect
0101 f'C 1101 - Undefined
01 1 C - Undefined 1110 Unde1ined
0111 Undefined 111 1 Undel1nCCI

Only like srze registers n-,ay be exchanged (8,bit w,;h
8-txt or 18-bil with 16--bitl
Addressing Mode: Immediate.

C NOi a llCCICd.
Description: AC'ds to the OIX!m-'lc: 'fhc cnrry hi ! is not
offcctcd. thus auO' ... ,ing this iltSlrucl,on to 00 used as a loop
counter 111 mutti01c-pn1c1sioo coo,wtations. When opemling
co uns,gnec values. 0r'!y the BCO and 8NE txanches can be
e)(OOCICd to behave consistently. WhOn operating on rNOs
OOn'lplernent valul.!s. all Signed branches arn correctly
avail;)bto.
Addressing Modes: hlherant: Extended' OirP.c:1; lnrlexeo

Description: Pt(){lmm ocntrol 1s transterroo to me el1ective
address
Mdre$slng Modes: Ei<tendcd: Direct IOC!exed.

Condilion Codes: Not offoctCCI.
Oesc.riplioo : Program controJ is transferred to the c ffce1,vc
aCSdrcss .lltcr stor,ng lhc return add,css on the t\clfdwarc
StilCk. ARI S illSlr\JCtion should be the last executed
11\Structico ot !he sub1outir,-0.
Addressing Modes: C.x.1cnded: Oitccl lnaexoo.

z Sot ti the IOaded data 1s zero; clrmrnd Oihermsc
V Alwa)'S cle-ared.
C Not aliec:tf!d.

Desc ription: Lo,ids the con1ems ol memol)• loca1100 M ,010
the desigomed regi~ler.
Addressing Modes: Immediate: Extended: Direct: Indexed.

________________________ ___JF-D1A=M+

Load Register from Memory
Source Forms: 1..00 P, LOX?, LOY P; LOS P: LOUP
Operation: A'- M;M + I
Con(fltlon Codes:

H NotaHectcd
N Sc-1 if !he fo.lded dnto 1s negalive: doored

othetwiso

Load Effective Address
Source Forms: LEAX. '..EAY. LEAS. LEAU
Operation: A'•- EA
Condition Codes:

H Not affectecL
N Not affected
z LEAX. LEAY: Set ii the ,csutt ,s zc,o; cloan:td

otherwise. LEAS. L.EAU Not affected
V Not attected
C Not J ffectecl

Description: Calculates the effective acld,o.ss t,orn lhl! index
addressing mocie .::snd places the OOdrcss '° ~n indOx:\ble
register.
LEAX and LEAY atfect lhP. z (1.ero) t:it to OIIOv/ use ot
these registers as ooonters .:inti for MC6800 lNXl DCX
compalibilitY
LEA.LI and LEAS do n01 aif P.CI the 2 tlit to allow c1oon1ng up
the srock while returning the Z btt as a IX!f.lmctcr 10 a caning

Logical Shift Left
Source Forms: LSL O: LSLA; LSLB

Operation: C · I I I I I I I i I· o
b7 bO

Condition Codes:
H - Und&li(){?d:.
N Sat rl the result is neootivc; clcaroo o;herv,ise.
z Set d the re.••olt is zero; cloan.ld 01har11iso.

Logical Shift Right
Source Forms: LSR O; t SAA. LSRB

Operation: o ·I I I I I : I I I ,C
b7 bO

Condition Codes:
H N-ot ..ittected-

Multiply
Source Form: MUL
Operation: ACCA'•ACCS', ACCA x ACCS
Coocm1on CodM:

H Nol a'fectoo.
N - Nol 011ec1od.
z Sel if Iha rnsufl is 1ero: clea.roc othC'WiOO.
V No: atlected.

z Se1 11 tho 1ooaed data i::. 1ero: cleared ott1ermse.
V Always CIOO(<Y-1.
C Not affected.

Description: Looel tho control$ of the momcry location
M;M • 1 Into tile d.:tsignatf!d 16-bil reglstCf'.
Addrcuing M odes: Immediat e: Extended; Oimct: Indexed

routine. and also lor MC6800 INS:0£$ tompatibdity
Addrt'S$ln9 Mode: Indexed
Comments: Due to the order 111 whiCh ol1ecli ... r. 11drlresses
ore cak..'1.Jla!ed internaity, the LEAX. X 1 + and LEAX.X I do
not ::idd 2 ond 1 (respectively) to thO X 1e-;1ster; t,vr tt1stoad
IOa\'t:! the X register 1.mchanged. This ~s..'l apphes to the
Y. u. and S registers FOi" lho uxpectecf resu,'ts. use t'io
1~1er mstruCIX)n LEAX 2, X and LEAX 1, X
Scmc (txamples of LEA inst'l.lcnon uses '1re g rven in the
following table.

fn.st,uction Operation Comment
LEAX 10, X X- 10 X Adds 5-bit consmnl 10 to X.
LCAX 500, X X -500 X Adds 16-bil constant 500 to X.
LtAY A, Y Y-A y A.dds 8 -bit accumu!aio, to Y
LEAY 0, Y Y .. o y Adds 16-bi: D accumu1a10, to Y
l.£AU 10, u u 10 u Subtracts 10 trom u .
LEAS 10, S S 10 s Used to reserve a<e.a on stadt
LEAS 10. S $ -,- 10 s Used to ·ciean up stack.
LEAX 5. S S + o X Transfers os wen as adds.

V Loaded witn the resu11 ol the oxc:lusive OR of bits
six .:mcf seven or the ong,oal ooorand.

C Loaded W)th bit scv(!(I O' the original operand
Description: Shi,s al! bets of accurt'l.llator A or a or memory
location M one place to Ule loll. Sit zmo is k:lodod with il
zero. Bit seven of OCCU'l""IU!a1or A or B or mem,ory locatio11 M
is shifted .nto the C (entry) biL
Addres.slng Modes: Inherent Extencied: Direct ll'd~x.ed•

Comments: This is a duplicate ll$Sembly-tanguage
mnemonic ior UlC single madtinP, instruction ASL

" Alway.:t ciearcd
l Set i1 the resuh is wro: clewed oihef'Miso
V Nm affEicted
C LOOOed w,1ri bit rero of !he original oporand

Oescrlptjon: Performs il IOg1cal shih nght on the ocemnd
Shifts a zero into bit seven and bil 7,e,ro ,nto Ill~ C (cwr)'l 1:)11
Addressing Mode$: Inherent Ex1enrled Oitcct: Indexed

C Set 11 ACCB bit 7 of result ,s set OOar~d Olherw,se.
Description: Multip:y the ~1nsigned bu'lary numbers ,n lhO
accumulDIO(S a-1d place the result in both llCCumvlat()(S
CACCA con1ains the most-signi!icaot b>1e of the result).
Unsigned multiply allows multiple.precision oper::it,on:s
Addressing Mode: Inherent
Comments: The C <carry> bit allows rou,ding the mos1-
signlficru"II byle through the SCQUOnce: MUL, AOCA ,10.

45

LD
(16-B i t)

LEA

LSL

LSR

~1UL

10 I 6B09 INSTRUCTION SET

r~EG Negate
C 5'-1 ii a b(),row i:; QC.ner.iled. deart'l.1 olhel\,•i!.e. Source Form, : NEG 0 . NEGA: N[G8 OesctlpUon: R~es tt10 operand with ,ts r,,'tls

OpcraUon: M'• 0 M
conolcmeot. The C (carry) bit rcaresl!I\IS a borrow ond -'- :;cl Condi1ion Cod,c$;
to Ute ,nve,sc ol ~ tesAl•'Q M..-y c;,try Nole thal UO,, ~• H Undchncd, replrn:1.:d by •l~ lf ano only 11} !hi$ c.>s(: ,s the V Covo11tov1} bit N Set if lhe fC$U!l is l'ICG,"i.llVC: CIC:~ed othC1\,•1&t" sel Tho- \'311.M.! 00.~ IS al!!o IL'Ol30ed b)' 11sclf. 3nd only in thiS z Set if lhe r,~lt 15 ie<o: Clt!i!red Olhet\v1se. CJSC r.: tl'le C <carry> t:111 cr.ta,cc V $ P.t ti tho 0t1ginal oocrnnd Wa-.i 10000000. Addressing Modes: lnhcrem; Cxtenrlod 01roct

t~C>P No Operation Condition Codes: Thi$ in:.tructl()n C.'ju:;(.'S Ol'\ly the program
counrer to i:lo mcrcn-..enmd No orhc-< rug,slt:rti or momo(Y

Source Form: NOP locations au-. H1rOOlcd
Operation: Not .tf-ecred AddreuJng Mode: lnhetrnt

!)R Inclusive OR Memory z Sot 1f ;he :e:;utt IS uiro; c loored o thl:rwise

into Register V A:wavs doored
C r-;c: offCC1'?d

SoutC$ FOfm#: OAA P ORB P Oc&crlptlon: Pc,-rlorms .r.l ,nc:tu:;ive OR op1m11i()') 001\\'t'!eo"I
Operation: n . R v f\1

the CO'leentll: ol ac:o.1m.1t.,C0t Ao, B .wld rhe cont('(IIS of
Condition COClea: memory .nc.11-00 w a.'lc 1tx: result 1s sroreo in occu"",.dmor

H Not auea1.'<f. A018
N Sot I! thf! re5Ult I!': 1"11.lOml·.i,r. cro..,red Oll'le<W•-iu. Addre,sJng Modes: lmmcciaro ~1.o<ICCO O.rect. lndexfld

(;~• Inclusive OR Memory Immediate Oescrtptlon: Pet1orms an inctu:..ivl? OR of)P,r.1hon 00-1•1.·een

into Condition Code Register tfte contenrs of 1tt<t ocncfi !)On coce re{l1$te<s ~rd the
11TYT1ethale \'O!ue, M d !he rcsull ls placod 1n tne condition

Source Fonn: 0RCC ~xx c:::odo tegislN Tod JI\StrvcbOO t'n3)' be U"...cd ,o set Jlt!C<'l\lJ)I
Opcrot!on: R , R v Ml mm::le (Ctt:ib(e mtcrn.,,pt~J Of' aoy o<hcr b1t(sl
Condlllon CO(Se,.: AUcctCO ~O.Og 10 lhe ooeratio1l AddronJno Mode: lrnmedi;nc

Push Registers on IFF b5 01 ,=1byte SCI. o,o,, SP • SP I, (SP}- IYl
SP' . SP 1, CSP~, IYH the Hardware Stack lFl- b4 0~ posl:>Yte &et U11.."¥'I SP'• SP I. (SP). IXL

Soureo Form: SP• SP I <SP>· IXH
~ IC(;r$1Cf"J/$/ IFFb3 01 POStbylc sot, 1hen sr·. SP 1. <SP), OPR
P$HS • I.ABEi. IFFb-20,posrt,ytesc:. tlv!n SP', SP '· tSl'l- ACCO
Por:t~1:P. IFF b 1 ot oosroyte SOI then; SP·• SP 1. <SP>, ACCA
bT bob5!><b302bl 00 IFF bO oi POSlb)•t~ S¢1. then• SP', SP 1. CSP). OCR

~ u Iv Ix loPi a I A [cc) Condition COc:f.es: Not 3tfccced.
Oe$Crlpt!on: Atl. some. cY nono ol Ul¢ proc~so, rogistc-!fs

oushordef • .we PUshed er.to lhe ha-C\Vare :-:sack (With the CXO&Otionol
Operation: ;he hatdW3fQ SUiek poinlt.'t 1ts(}l1l

IFf' b7 al OO<Slbyle .el. lhen. SP • S P 1, tSPl- !'Cl. Acldrcs.slng Mode: In-mediate
SP·, SP I, ($Pl, PGH Comme,n1,s; A Slf'lgte registet m:ry ~ S)t.1ced co tnc s;:.ldt

1~ b6 ol p:)Stbyle se l, lhen: SP'• SP l , ($ P\.-USL with inc conctiMn co::le$ oot bv doing nn 3Vtadec:-cment
SP• SP 1. t$P). USI t s.toro ooio the st3Ck (e~e SlX. Sl

PSHU Push Registers on IFF 05 or oostbyto $Ct l:1tin: VS • us 1, <USJ, IYL
us·. us 1, <US), IYH the User Stack Ff t,.: ol 00,,byleSClllTenc US"• US I. (U$), IXL

Source Form: us·. us I (US), IXH
PSHU r,,;,-s1cr "'1 IFF b3 01 OOOlbyle SCLlhen· US'• US 1, <US), OPR
PSHU •t.A9CL lr"F- b2 o· pOS(bytl'! set. lht'ln; us . us 1. <US•· A,CCB
l'b5!t>vl• !FF bl oi po~IOylf! f.lll. tnen: us·, us 1, <US!, ACCA
,; 06 b5 .. b3 oi bl bO IFF bO Ol posll)yte '"'L ,,.,.,. US'• OS 1. <US). CCR

IPCI u] v I x jDrJ e I AJccl Condition Codes: Not allccted,
Oe.$Cfiptlon: AU, ,ome. Of nonu ol 1ho processor rQQIS-IOtS

~ Cltdct . .vo pushtXS onto tnc oser S1adc (vnlh oie e.xccpoon of lhO
Operat>on: usor stack pOinter ltscm.

IFF b7 01 ""°'by',esct, {lien: us•- US ,.rus~ rct. Addre,.sing Mode:-: lmmediaJe
us·. us 1, <USl• PCH Comments: A s.ingl& rcoistar m..:r, bf! l)IOCed on !ti() sl.'lek

I.FF b6 01 pos,tb)'le SP.I. 1hcn: US • US 1. <US~ SPL wdh 1he c.ondltion codes sel by domg an au1odi:-cf"omen1
US'• US 1 <US>· SPH store onro the SC.-.ck <o~ STX. Ul

46

________________________ __.e_u-a..:M+

Pull Registers from
the Hardware Stack PULS
Source Form: IFF b5 of poslbyle set then: IYH· • CSP), SP'• SP 1 1

PULS register fist IYL' • CSP), SP'- SP t l

PULS ,LABEL IFF h6 of pootbyle set, thm: USH' -- ($Pl. SP'· SP 1 1
P-OStbytc: USL' • CSP). SP'· SP, 1

b7 b6 b6 b4 b3 b2 bl bO IFF t,7 of oostbtte set then: PCH' • CSP). SP'• SP 1 1

§u) v [x joPI a I A)eel PCL • CSP), SP'• SP I I
Condition Codes,: M(ly be pui led from s1aclc not affected

pull Oicier oth8tw1SC.
Operation: OescripUon: AU. some. or none of the processor rcgistOfs

IFF' bO ol 0001bytc set. then: CCR -{SP). SP' - SP • 1 i'.IIC pul!Od lrern lhC hf.l(dwarc Sl:J.Ck (with the c,x,ccpti0101 U'IC
ICF b1 of OOSlbY1C sot. then: ACCA' • (SP), SP', SP ~ i hardwara stack pointer i!OOIIJ.
IFF' b2 ot POSlbytc set. then ACCB • ISP). SP'· SP • i Addressjng Mode: lmrr1c-J1.ato.
IFFb..1ot posttlylCOOI. lhen QPR' - CSP), SP'~ SP - l Comments: A single re,g:slcr may be pulled from lhO staek
IFF b<t nl posl.byte s,(!l. !hell IXH· • CSP), SP'• SP - 1 with cc,ric:lition co::IP.s set by doing an w..rtuirn:rernent tcmd

IXL' • CSPl. SP·· SP , 1 from the stack <example: LDX.S , 1).

Pull Registers from
the User Stack PULU
Source Form: IFF b5 ol POSlby1e sel, then: IYH . cus>. us·-us .- 1

PlJLU mgistP.f list IYL' . cus1, us·. us , ,
PULU •LABEL IFF b6 01 postbyte set. then· SPH' - cusl. us·-us .- 1

f'oslbyte· SPL· • CUS), us·. us· 1

b7 b6 bS b4 b3 b2 bl bO IFF bT ol postbylc SOL 1hen PCH • CUSl. us·. us ' I

IPcl u Iv Ix loPI a I A loci PCL' . <US), us·. us ' I
Condition Code~ May be- pu11oa trom stack: not attccted

- pull order olharwisl.!.
Operation: Description: Alt, some. or none ol the processo. registers

IFFbO ofpos1t,yteset. then: CCR' • (US). us·- us~ 1 are pulled from the user stack {with !he exceplion ol the u$e"J
IFFbl otpos1bytcset. then: ACCA·, (US). us·- us I I s1ack DO!Oter itsetn.
IFF b2 ot oos1bytc set then: ACCB'• <USl. us·. us 1 1 Addressing Mode: Immediate.
IFFb()ofooo1bY1eset. !hen: DPR' · <USl. US' • US , I Comments: A single cegis1er mRy be puned lrom the st.;lCk
IFF b4 of OOSlbyte set. then: IXH' • <US). us·, us' I v1r,tn condition ocdes se1 by QOtng ,:lll autoincremen1 lo.,"ld

IXL , (USl. US', US 1 1 lroro lhc Slaclde.x.amplc; LOX.U • ~ l

Rotate Left R(ll
Sou,ce Fotrn$; OOL O: ROLA. ROl.8 N Set rf the rnsult i:s negativl}; dcorco othcrvl'ISC.

~
·@

I
z Set a ihe result is ze,co: doaroo OtllCIVIJSC.

Operation: V LoOtded wi1h the result of the exc!uSMJ OA ol bits

I I I I I I I I · six oncl SC\ten ot the original operand.
C LOOOcd wi1h bit sewm of the otiginal opera1,d.

b7 bO Description: Rotates a!I btts ol 1he operand 00!! place le11
Condition Codes: through the C Ccatl)') b L This is a 9·bil rotation_

H Nol a.tfected. Addressing Mode: Inherent: Extendect Oirect; Indexed.

Rotate Right
Source Forms: ROA 0: RORA: AORB

RCiR

1. I
W· J N Set if the result is nem1tive: cleared otherwise.

Operation: z Set if the <esult is wro: deared 01herwise

I I I I I I I V Not affCCleCI
C Leaded with bft zero of the previous ooc~d

b7 . bO ~scrlption: Rotates au bits of the QPC!ancl one Dl,ace right
Conclltlon Codes.: through the C {C31'r,-J blL This is a 9 .brt ro10.11on.

H Nol a!fected. Addros.sing MOdC$: Inherent. Bctcndcd; Chrcct. lnCCKcd.

47

10 / 6809 INSTRUCTION SET

RTI

r:, T ,:::
I\ ._1

C 5· 1-·
•.Jt

SE;<

ST
(8-Bit)

ST
(1(3-Bit)

SUB
(R-Bit)

Return from Interrupt
Source Form: Frrl
Ope,.tfon: CCR· fSPI. s,,·. 5P • 1. U>c<>

IFF CCR t>.t E ,s set l"il!I'\: ACCA'. ($Pl, SP'. SP -, I
ACCB"• ($Pl, SP'· SP , I
OP'R' • ($P). SP· SP• l
IXH · ($Pl. SP·• SP· I
IXL · (SP). SP'• SP 1
IYH' · ($Pl. SP', sP 1 1
IVL · tSPJ SP, $P t I
USH . (SP}.SF'· $Pl I
USL' • <SP>. SP', SP, 1

Return from Subroutine
Sourco Form: Rrs
Operation:

?CH'• lSPl. SP· SP 1 1
PCL • <SP>. sP · SP .

Subtract with Borrow
Source Fo<m,: SBC,\ P: SBGU fl
Operation: R • Ff .. C
Condition COdos:

H Uc'\dCl ned.

" St:1 11 the resu111$ neg,uhvt. Cle.lr~ othOr.vise.
7 Sci ,i rl'w! resull 1S <P,!'O cleared or~~

Sign Extended
Source Form: SEX
0pe ... ,1oo,

II hil s(l'ICl'i ot ACC8 is s.et lhCt'l ACCA' , Ff 1"
Condlllon Cooct=

Pl:.O ACCA.'• oo ••.

ti Not u!'ccted

Store Register into Memory
Souteo Fo,ms: STA P; $lB P
Oper.ation: M • R
Condition Cooos:

H N01 O~r.cicd
N Sci ,1 100 result 1& negal~ ce.voo othetw~

Store Register into Memory
Source Fol'ms: STD P: STX P $TY P S'fS P; STU P
Operation: M M • I'· A
COnClilion Codos:

H NOi Oliecied
N Sot d the res,,111 i~ neg:.tlrv~ cJearCC oth('rvl':$(•

Subtract Memory from Register
Source Forms: SUBt\ P: SUOO P
Operation: R·. R M
Condition CO<Sos:

H Urlelfl'l1ned
N Set •I !he re~;ull 1s negm•vc: cienrcd othcWASC,
z Sc-1 I :be resi,;it ts ?Pf~ Clc.lted othe!"MSO

48

PCH , (SP). SP', SP f I
PCL' • <SP>, SP , SP, I

l"l' CCR bl E .. cloa<, 1r.(l1l l'CH' • <SP>. $P'· SP• I

PCl •lSPJ.SP• SP• 1
Condition Codes: Rocoverotl t,om the :;taek.
Oe.scriptlon: The si:wcd maeh-nc sroto ls rQCOvered froin 1he
h.-:lrCwaro SI.Jdc nnd cont rot t, returned ro lhG r'l(cmi:tited
crooram. 11 lhe re<.:x:wu<cd E (entire) bi1 is door. 1l 1nd1r.nt1.1:;
l "'IOi onl~• u wbSet ol thc mnclime st.:m~ was sovcd (te1vm
~ Md conc,10, cooes) ini Ot\!y th.'11 ~ <S
rocoverna,
Addressing Mode: lnllcron1

Condition Codes: Nol a-fcaOd
Description: Progr.w,'1 oonvel rs rotutr'lf!d ftcm the
sut>routin~ 10 lhe c::in ng oroornm. 'fhc return nddrcss
i!t OJlled from tile r.mck,_
Adel'tt3dft9 flk,<!~; frh!!'l'(lf'II

\' Sf t if~\~\' :. QC.ne,;ll•"'Cf: cie;-U\.'IJ 0 11-(:fWt:;e.
C S'-'11' ii bcncw 1s \j(•ncr:11,_'l(j dearnc o~ti,ywise

O\,se:iption: O:ub1m1..-i:: 11,e cv111~11:& nl rnem-Jry 1oca.11c111 M
.rd :he b:,,row (in th.! C t.cany) t>t> rrom 100 wr1Jo~tS ct the
d&sign::i:f!d 8-~:ut rco1s-1et. nnd ciaccs the re:;u1t 11'1 th:'.i:
fCgi&ter. Tho C bc1 l'CP'esent:; ,3 tior,ow 3,-rj h1 :;ct to tno
.nver:se o1 :he "L>Sl./l <0g oinary cart)•
Aodressing Modes:: tfrmeck1hr Ex!enc:tco oo-«t lncrex.t.-d

N Set ir me rosun ,s: t'tC{JJ:trve:- dea-C<S olftoMir.e
z Scl il the rc:;uU ,s 2:Cf'O, CIP,:la!d Olhef'\.\'1$C
V N01 al!ecicd
C Noe 3ffecli.1C.

Oescriplion! This 1n:.1ruet1on tmnsforms a IWQs comp:.cmeit
8•brt value .n acc1.1mu1a10, B into o two:; t.:omotement 18-hit
V3!ue in L'lO O axutrulatoJ.
Addressing Mode: lnherenL

z Sot if thr rc:;ult ,s ?ttrO: clo~•od OlhNWISC
V Always cll•.i: cd
C 'IOI offe<:t""

Oc$Crlptlon: Writo~ the- con:t11ts ot iln 6-btt rog,s.tc."' in:o a
n'll;mcxy location,
Addre-.ssln,g MOdes: LxtC!\00:t Oul'Cl lnc!t>..xi'<l

z Sol 1t lhC! fC$.ll11s wru, deoroo othervrsc
V ,\lways doareo
C N()I a'feci~

OoscripUon: 'Wri~ 1~ CCt'ltt!nts ol a 10 b11 rrgi:-.tt.><' ,n10 t>.-.'O
cons1m . .1 vc memory loc.:1.11on!.
Addreulng Modes: tx1cnd0d: OirL'CI lndcx~d.

V Sot ,I the OVCtf.,ovt ,s. ~meet de.ll't:d othi.-rw~~
C Set rl a t<irrow is gcneratOd cleared otherwise

OoseripUon: Svb!ructs tho value 1n memory 1oc:11·on M trom
tt,e COl'!Jcntso! a des-gnafed 8-bs tOQIS-ler 1'ht! c <carry> bl!
reprn$01lt$ a t:,orraw and ,s se; to the ,n,,-crsc oj the rc~ulllng
bml-ll)' Cilll'y.

Addreulng Mode:i.: lmml'd131e; Ex.t<.•ndcd; Orec1· lnUCl!.Cd

________________________ __.p_u,a=M+

Subtract Memory from Register
Source Form.$: SUBO P
Operation: R' , R M:M t 1
Condition Code.$:

1--1 Nol al'ected.
N &.?t rt the re-suit tS ncgotivc: clcored otheMiSf!.
7. Set rl the result 1S ?Of• . -cleared otherNise

Software Interrupt
Source Form: $WI
Operation:

Set E tonlirc state will be SP.ve::t>
SP'• SP 1, (SP\.-PCL
SP ·-SP 1. (SP), PCH
SP', SP 1. (SP>· USL
SP'• SP 1. (SP>· USH
SP' -SP 1, (SP), IYL
SP'• SP 1, lSPl• IYH
sP'- SP I , lSP), IXL
SP'-SP 1. lSP), IXH

Software Interrupt 2
Source Form: SWl2
Operation:

Se1 E (enlire siam saved)
$!''-SP 1. lSP), PCL
SP'· SP 1. lSP), PCH
SP • SP I, <SP), USL
SP·• SP 1. lSP), USH
SP'• sP 1. lSPJ, IYL
SP·· SP 1. {SP), IYH
,sp·. SP 1 ISf>l· IXL
SP', SP 1. (SP)· IXH

Software Interrupt 3
S~ rce Form: SWl3
O()Ct tl llon:

Set E (entire smte v11.~I be savad)
SP'· sP I, CSP~ PCL
SP•, SP I , {$Pl- PCH
SP', SP ;, lSF>, l/SL
SP', SP 1. (Sf'). l/SH
So>·, SP 1, ($Pl-lYL
SP' , SP I, (SP), IYH
SP' -SP l. (SP), IXL
SP'• SP l. lSP), IXH

V Sot ii 1hC O\'erllow tS genernted: cleared OUlCf'WlSC.
C Set if a borrow is ~enerated: cleared olhOrwise

Description: Subttacts the valuf! in memory tocabOn
M:M • , from ;he ccntems of a designaled 16-bi1 ,agis1e1
1he C Cc:arry) bit tooroscnts a borrow and is sel to the
Inverse of 1he ri:'tSU!t1ng binary cany.
ltddressing Modtiti; lmmcch::ite. Extended; 01rec1: Indexed.

SP', SP 1. lSP~ DPR
SP', SP 1, CSPl-ACCB
SP', SP I, <SPl, ACCA
SP', SP I, <SP\.-CCR
S9t I. F (mosk 11'1tcnupts>
PC', (FFFA):CFFF6l

Condition COdes: Not offected
Description: All of the processcr cegir,-:ers .are pushed onlo
lhe hardware Slack (vl\ll'l tl'le exception of thF! hrurlware Mack
i)Ointer its.ell). and control is trans'errecl thrcvgh the softw.l:lre
interrupt vector. Bolh 1hc normal ond fas1 in1errvpts nm
masked (disablOdl.
Addressing Mode: hlhercn:.

SP'• SP I , (SPl-DPR
SP• SP 1, (SP>· ACCB
SP', SP - I, C$Pl-ACCA
SP', SP 1. ($Pl- CCR
PC'• <FFF41;CFFF5l

Condition Codes: Nol llffected.
Description; All o1 the proces.&0r rr.giste1s arc ouShed 0010
the Mn:lwafe Slack. (with the mrc;:eption of Iha hatdware stack
points, rt SCIO. and contr~ is irdns!enerl thrcug~ the sotlware
1nterrup! 2 \'L'CtOr. Tl'ks 1n1crruot i~ available lo lhu ol'd user
and must no1 be used in p."l::;k,ag!!d scttwarn. Th,s 1ntC-.!r'\JOI
does not mask (d1sab1Cl lhe n:,rmRI mid fast lf'l!C!'M:l1S
Addressing Mode; fnhcren1

SP', SP 1. ($Pl· DPR
SP', SP 1, ($Pl, ACC6
SP, SP l. lSP>· ACCA
SP'· SP I, lSPJ, CCR
PC'· (FFf2);(FFF3)

Condition Codes; Nol al1cctcd
Description: All ol the oroccssOf rcgis.ters ore pushed onio
the hardware slack (v11lh lhO oxccpt,on of the hJ.!Oware S13Ck
poir.1er its.el'). and oor.1r01 1s imns!~red throvnh lhe software
interrup1 3 \'ecior. Th.s ,ntonupt docs not tr.ask (Cfisob!el the
n::irma:. :-tnd fast ,ntanupts.
Addressing Mode: lnhc,cllt.

49

SUB
(16 -Bit)

S~J I

10 / 6B09 INSTRUCTION S ET

TFR

TST

FIRQ

Synchronize to External Event
Source Form,: SYNC
Operation; Sloo on:x:es..~ing .nslnlelions
Condit.ion Codes: Not ,.;ffecu.'d.
De,crlptioo: Vlhen o SYNC instrucMn ,s cxocuteo th€'
1)(0(:0:.sa ent01'$ o $Y,Chronl1ing state. SIO()$ processing
insttuC1ions. and wMs foe an ln1~rf\Jp1. Wh(:n an in:etru!>'
OCCUt$. the synchrontldl_g S1,lle ~ clearod Ood Dl"OCCSsi~
COtllW'IOOS. tf !he intcm.:,pe tS en:lblecf. and II bSI ltuce cycles
or tn()(O. lhe proc:1,.~r will pctfom, L'w. inl(Jrruot rovt1ne II
the Interrupt is ma3k.cef or 1s &1'1011P.f thnn 1h•oc cycles. 1t1e
O(OC:CSOOr .simply continues 10 the nexi in::itruc.t,on 'Nhilc in
lhC synchrom1ing :~latu. the a(Sdress and dn!a buses are 11'1
ll-ehogll--Sla!O.
Tot$ instruction pt0V1dcs sottwnre sync:httl<11t:Jll()Cl w11h n
hilrCwore proce:t:t ConsidCf' lho tol towmg uxninplo 101 ll10h
S'PIJl.'d OCQuisition o1 data:

Transfer Register to Register
Souroc Form: TFR Rf. R2
Operalioft: n, .ru,
Condition Cooe: No1 nfeclJOd unrcs:s A2 is lhn c:ond1tlt!l'1
c:odt1 r,c,giS(Cf
Oe,eription: TrnnSfers OOt..i holwocn two dOS1gMtf!d
rer,~1c-rs. Bits 7,-4 ol the poslh~•tu tJe!in~ tl"IQ ~roe rp,g1n.1e,,
\\1'ilr bits 3-0 define lhe c:iesltn.'tlt0n ft.'91SIC1 . OS tolk1ws:

0000 AB 1000 A
OOOi X 1001 B

Test
Source Forms.: TST O · TSlA, TSTR
Opcrati,oo; TEMP, \/1 0
Condition Codes;

H Not Off«ol<I
r,.. Sel ii lh',!' result is nf!~p~ .•. . •:••M .,•hf" ,, •• ,ft

Z Set ,1 the rcsuh is ,em: , ... "'"" ...
V Alway:. c5corcc
C Nol :tlfl"Clt-d

Fast Interrupt Request
(Hardware Interrupt}
Operation:

IFF F bit c!u::V. ftlcn: SP · SP I. ($Pl, PCL
Sf'', SP 1, CSPJ, PCH
Oic;:,r C (subset s1a10 tS saved>
sP , SP 1. CSl'I- CCR
Set f, I {m.,,.c;k lur?fr<;'f 1rltcm.JP1s>
PC', 1rrF6lCFFF7l

Condition Codes: ~t aftec:tOO.
Oeacription: A nR"O (fa.~l intCJ"l\ll)1 fCQUCStl with the ,: (tns1
in!CN"Upt r~ ffl3Sk) b-1 c:1,1,i.1 Qru"'..CS Ille~ m1ecrup1
SCC)JCfTCe IO 0<."tu.r ac the end OI !ht! eutretM instruction The
prcgmm coontor Ond r:ona.tx;in 0000 re(liS!('r nre PL°'Sht.'d

so

rAST SYNC WAIT FOA OATA
lnterrupi!
lOA DISC OATA rROM OISCAA1)

Cl E,\R INTicnnuPT
STA X· PUT 1N BUFFER
OEC8 COUNT Ir, DONC?
BNE FAST GO AGAIN IH<OT

~ syn::t\(On,z~ SS3t<t S dearf!d by any IOlCfl\11'.)t Of
cour.;it Cf\Obfed ,ntCIT\IPIS :JI thrS po:nt may dt."$ll'QY Ille dt1tn
tr.msler nnd. as sucn, .should rr.prm•,enl only t!rr.Cf(lcnc)'
c:ona ton:;

The smnc (X)llOCCtion used for inlern,pt,dm'4..'f'I IO~
may also bct USOO klf' hlQ'l\.:.peed d.1i.1 lr~t,:. Dy settino:
1~e ITTtcrn,pt mask and us1r:g the SYNC irts1tuenon os tile
,Y.lO\•P. e,c:.ml)le demon.st"otes
Addressing Mode: lnhOfCnl

0010 Y 1010 CCR
001, US 101· OPR
0 I 00 SP J I 00 U"lcfefned
0101 PC • 101 Undefined
•I 10 Ul'ldatincd 11 10 Undefiner!
011 1 Undelmed 1 ; 11 U"IUCfined

Or-Jv Eke f"'--'"!! rcgi$tefS l'l\lY 00 traMtcued (8 bl ro 8-bif.
or 16·011 to f6-,-bitJ
Addressing Mode: lmmod,:;ite

OcscripUon.: Se1 thP ~ <nc.'9<-r.,...,l'J ~ Z (re!o) bi:r. ;JCCOfdirq
to tile contnrts of memory location M , ;ind cfenr 1ho v
Covu•l!f\W) M ThE> TST "'stnJ<::hoo oro•,••des only minimum
irslo1mrmon when tcotlng unsignod vOlt:<:s: since no unsigned
vah.w:· ,s Ii.::,.~ ;h.)n zeto, BLO and BL$ h3.VC f\Ou1,'11y Whi,e
5'-1i Wt"1 be used a11~ TST. it P"C\"l00$ c,tadly 1ne s..ime
,,,,mml n•. R'IF wh1rh .•. tttd<!rr.d The sig!lt.'(I btnnc::hes nrf! ' ,t:,,.
Addrc:51og MOOos: Inherent: Ex1r ndL'd: D a:CI l f'l(lcxed
Comments.: 1 he MC6800 Ot'()Cl"!~.:---IY elc:,us lhn C (C{lrryl Oil

0010 Inc h:irdware ~~tock. rronmm con:rOI is tmn~lcrred
ttvough I~!! fa!.t inten-uOl tCQUesl \•f'Clor An ATI (return frQffl
1!'1V'-lr\lOT.» .ns.ln.lClicn rNums the PfflC:t"5SO' lo lt,e OtlQIA,.'ll
rosk.. II ~ OOS.Sit:le to (.'f'llet tile fMt ltU(-!mlpl ((.'C;~S:I rounoc
wlh the ei'lt•re m.'iCh1n(I ~tote S.J.ved if t'ie fast int\."t\.lCI
reoucst occurs after n ctcor and w.,11 tor interrup1 inst:uC11on
A norm:l1 interrupt recwos1 has lower priorit)' than me 1as1
rit!".JTUp,S icouest and 1~ wever,kXt 1,om ·1'?em.:phng ,,...,
t..;:sr inW,upl r~ <()Ulme by aulOIT".;;lt(:: setting (t' the
I Cinterrupl ruquCSl ma~k) bit This ni..i!'lk tilt ccvlrt lh>an be
reset O'Jl'lng the 11"\tortupt rovline el prlor,ty w;:,s not d~ red
The f~1 in1c-rruo1 rcque~t '3110-ws opurtJtions on mcmosy. TST,
l'JC DEC. nc. lf'I.SlrutlOl'S ·,,Jnor..tt thQ O\•C'fhe3d ot s.all'i,,g
the (:t' t fft m.:lch')e S1.)1t on the !iUIICk,
Addressing Mode: IMetcnr

________________________ _.F.Drb=M+

Interrupt Request
<Hardware Interrupt)
Ope ra tion:

IFFI bil door. men. SP'• SP 1, CSP). PCL
SP'• SP 1, CSP>· PCH
SP' , SP 1, CSPl-USL
SP', SP 1. CSPl· USH
SP', SP 1. CSPl, IYL
SP', SP L <SP>· IYH
SP', SP 1, (SPl, IXL
SP', SP 1. <SP>, IXH
sp·. SP 1. (SP), OPA
SP·, SP 1. CSP), I\CC8
SP·, SP 1. tSl'l• ACO\

Non-Maskable Interrupt
(Hardware Interrupt>
Operation:

SP', SP 1. tSP), Pet
SP', SP 1. CSP>• PCII
SP', SP 1. CSP), USL
SP'· SP 1. lSP>• USII
SP' • SP 1. (SP)- IYL
SP'· SP I. CSP>· IYH
SP'· SP 1 tSPl· IXL
5p·. SP I. CSP>· IXH
SP', SP I , (SP>· OPR
SP , SP 1. fSPl· ACCB
SP· SP 1. <SP>, ACCA
Set C lCOIJ!O Sll!IC save)
SP• SP I, (SP>, CCA

Restart (Hardware Interrupt>
Operation:

CCR• x1x1XxXX
DPA'· 00111

PC' · (FFFEl:(FFFFJ

Se! E (entire state savP.dl
SP'· SP 1, CSP)- CCR
Set I <mask further IRQ intemmtsl
PC'• CFFF8l:(FFF9l

Condition Codes: Not affected,
Description: II the I Cintcrn.iot r~ucs1 mosl<J btl Is door. z,
low level on lhc iRO input couscs th~ 1n1caupt SCQueocc to
oocur at lhc end ol the o.,rrcnt instruction Control is
rc1um8d 10 tllQc ,nlCf'."'uPl~1£rog(3!'0 using a Rll croturn hom
il'lletruDU 111s1ruction. A I Uasl intorrupt requesU 1n.1y
intenuJ)t a nor'fnal iAt5 c,ntl'.rrupt 1aques1J roul1rll;! arKJ be
reo::igoizod anytime afll'?f' the! int~rrupt vccro, is taken
Addressing Mode: lnhmenl.

Se1 I. F Cm(!Sk interrupts)
PC · CFFFCl:CFFFDl

Condl1fon Codes: Not attec:ied.
De.sc:rlp1lon: A nenative edge on thP. NMI {non-<MskAb!P.
1ntcrrupl) inpu1 ca.uses all or 1ho P'ooessor's rer,isters
Ccxoep1 the haraware stock pointer) to be DUshed onto :he
Nl11!'ware st3Ck. staning 31 lhe end oi the o.,rrcnt instn,,ction.
P,agrom control is tmnsfcrtcd throl_!gh the NMI vector
Succ~vo negative Odgos on the NMi input will C3VSC
sutcessh·e NM! operations. Noo,fYlaSkab!c 10te<fuPt
ope,ratico can bE~ intema:ity blocked by a REsCT- occ1·a1100
;md any nm-maskitble interrupt lhat oocurs will 00 la!clied II
this happens. the non-maskab!e interrupt opembon wm occu~
:iher the first loAd into thf! stac:k pointer CLOS: TFR r.s: EXG
r.s: elc l after RESET
Addressing Mode: Inherent

Condition Codes: Not 3ffe~ed.
Descrlptlon: The orocC'SSOr is 1nitk11tu.-d CreQuired al1er
oower•on) to s1an ptogram cxocull(lfl_ 1'he slarting addrnss
is fetched from the tCSIJlt VCC(Of,
Addressing MOdo: E.x.1cnd0d: llldirott.

51

IRQ

RESTART

______________________ ---.1F-•i•&=M+

line

Appendix A/ Editor Commands

Definition of Terms

A line number in the program. Any lines between 0-63999 may be used. These symbols may be used:

First line in the program.
Last line in the program.
Current line (see definition below).

current line
The last line inserted. edited. or printed.

startline
The line where an operation will begin. In most commands startline is optional. II omitted. the current fine :s used.

range
The line or lines to use in an operation. If more than one line are in the range. they must be specified with one of these
symbols:

to separate the startline from the ending line
to separate the startline from the number of lines

increment
The increment to use between lines. In most commands. increment is optional. If omitted, the last specified increment
is used. On start-up. increment is set to 10.

filename
A 1-8 character name ol a tape file.

COMMANDS

Cstartl/ne, range, increment
Copies range to a new location beginning with start/ine using the specified increment. startline,
range. and increment must all be included.

C500 , l 00: 150 , 10

Orange
Deletes range. If range is omitted. current line is deleted.

0 100 0100:1S0 0

Ellne
Enters a line for editing. If ltne is omitted. current line is used.

E 100 E

These are the editing subcommands:
A Cancels all changes and restarts the edit.
nCstring Changes n characters to string. If n is omitted. changes the character at the

nD

E

H
I string

current cursor position.
Deletes n characters. II n is omitted. deletes character at current cursor
position.
Ends line editing and enters all changes without d isplaying• the rest of the
line.
Deletes rest of line and allows insert.
Inserts string starting at the current cursor position. While in this Mode. 9
deletes a character.

55

PAGES
DISCUSSED

1 1

1 1

10

APPENDIX A / EDITOR COMMANDS

n Kcharacter

L
0
nScharacter

X
:£Nill]
®!IED8
n~ACE8Al!1
n1,_- ,

Fstrlng

COMMANDS

Deletes all characters from the current cursor position lo the nth occurrence
o f character. If n is omitted, deletes lo lhe first occurrence.
Lists current line and continues edit.
Quils lhe edit and ignores all changes.
Searches for nth occurrence of character. If n 1s omitted. searches for first
occurrence.
Extends line.
Ends line editing, enters all changes and displays the rest of the line.
Escape from subcommand.
Moves cursor n characters to the right. If n is omitted. moves one space.
Moves cursor n pos1t1ons to the left. If n is omitted, moves the cursor one
position.

Finds lhe string of characters. Search begins with the current line and ends each lime the string
is found. If string is omitted. the last siring defined is used.

FA6C F

PAGES
DISCUSSED

Hrange 10
Prints range on the Printer. If range is omitted. current line is printed.

H100 H100:Z00 H

lstart/ine,increment 1 1
Inserts lines beginning at startline using the specified increment. stanline and increment are
optional.

!!58,S 1280 I d0

L filename
Loads the specified text file from cassette tape. If filename is omitted, the next fife is loaded.

10

l SAMPLE l

Mstartline,range,increment
Move command. works like copy except the original lines are deleted.

Nstartline, increment 1 I
Renumbers beginning at startline. using the specified increment, startline and increment are
optional.

N!00,SO N10D N

Prange
Displays range on the screen,

P180:280 P!80 1 S P• P•
p

10

a 11
Returns to BASIC. Type EXEC 49152 to return to Editor from BASIC,

Rstartline.increment 11
Allows you to replace stanline. and then insert lines using increment. startline and increment
are optional.

Rl00,!0 P. 100 R

56

_________________________ ___.F.il m=M+
COMMANDS

Trange
Prints range on the printer. without including the line numbers.

T100 Tl00:500

Vfilename
Verities filename to ensure that it is tree or checksum errors. Works like BASIC's SKIPF com
mand. II filename is omitted. verifies next file found.

VTEST

z
Goto ZBUG.

®
Scrolls up in memory.

(.)
Scrolls down in memory.

57

PAGES
DISCUSSED

10

5 , 11

APPENDIX B / ASSEMBLER COMMANDS

Appendix 8 /Assembler Command & Switches

COMMAND/SWITCH

A filename switch . ..
Assembles the text program into machine code. Any of the following switches may be used:

/AO Absolute Origin. (Applies only if /IM is set.l
/IM In Memory Assembly.
/LP Assembly listing on the printer.
/MO Manual Origin. (Applies only if /IM is set.l
/NL No listing printed.
/NO No object code generated.
/NS No symbol table generated.
iSS Short screen.
/WE Wail on assembly errors.

Unless the /IM switch is used, the program will be assernbled on tape using the specified one
to eight character filename. It filename is omitted. NONAME is used.

Examples
A SAMP LE/IM
A
A/IM/AO

58

PAGES
DISCUSSED

13

15
13
13
15
13
13
13
13
13

________________________ __.F.Drb=M+

Appendix C/ZBUG Commands

Definition of Terms
expression
One or more numbers, symbols. or ASCII characters. If more than one are used, you may separate them with these
operators:

Multiplication
Division
Modulus
Shift
Local And
Exclusive Or
L.ogical Or

address

•
.DIV.
.MOO.

.AND.

.XOR.

.OR.

Addition
Subtraction
Equals
Not Equal
Positive
Negative
Complement

+

.EQU.

.NEQ.
+

.NOT

A location in memory. This may be specified as an expression using either numbers or symbols.

filename
A one to eight character name of a tape file.

~ ~ES
L ________ c_o_M_M_A_N_o_s ________ ---=0:....:1-=-sc-=-u-=-s=-s=-=E=D::........i

C 18
Continues execution of the program after interrupt:on at a breakpoint.

D 18
Displays all the breakpoints that have been set.

E
Exits ZBUG and enters tne Editor.

Gaddress 18
Executes the program beginning at address.

Lfi/ename(W(RJ 19
Loads the machine-code file from cassette tape. If filename is omitted. the next file is loaded.

Pfilename first address last address start execution address 19
Saves the contents of memory from start address to ending address on tape. execution
address specifies the address where the program being saved begins execution.

R 18
Displays lhe contents of all the registers.

Taddress1 address2 19
Displays the memory locations from address 1 to address2, inclusive.

THaddress1 address2 19
Prints the memory locations from address 1 to address2, inclusive.

Usource address destination address count
Transfers the contents of memory beginning at source address and continuipg for count bytes
to another location in memory beginning with destination address.

Vfilename
Ver ifies date on the specified file or the next file on the tape ii no filename is specified.

59

APPENDIX C / ZBUG COMMANDS

COMMANDS

Xaddress
Sets a breakpoint at address. If address is omitted, the current location will be used.

Yaddress
Deletes the breakpoint at the specified address. If address is omitted, all breakpoints are
deleted.

Examination Mode Commands
A ASCII Mode
B Byte Mode
M Mnemonic Mode
W Word Mode
(the default is MJ

Display Mode Commands
H Half Symbolic
N Numeric
S Symbolic
(the default is SJ

Numbering System Mode Commands
Obase Output
/base Input
(base can be 8. 10, or 16. The default is 16.l

Special Symbols
address/
register/

Opens address or register and displays its contents. If address or register is omitted. the last
address opened will be re-opened. After the contents have been displayed. you may type:

New contents To change the contents.
(EN'ffii) To close and enter any change.
~ To close and delete any change.
t'"!J To open next address and enter any change.
(.) To open preceding address.
(l) To branch to the address pointed to by the instruction beginning at the cur

rent location.

address,

To force numeric display mode.
To force numeric and byte modes.
To force flags:

Executes address. If address is omitted. the next instruction is executed.

expression=
Calculates expression and displays the results

"The colon does not actually have anything to do with the CC (status flagl register. It simply
interprets the contents of the given address AS IF it contained flag bits.

60

PAGES
DISCUSSED

18

18

5
5
6
5

17
1 7
1 7

21
21

5
18

6
6

5
5

17

18

21

________________________ __.F-Drb=M+

Appendix D / Editor Error Messages
The following are descriptions of the error messages you can get while in the Editor, Assembler, or ZBUG:

BAD BREAKPOINT <Z BUGJ BAD RADIX CZBUGJ
You are attempting to set a breakpoint (1 J greater than 7, You have specified a numbering system other than 10. 8
(2l in ROM, (3) at a SWI command, (4) at an address or 16.
where one is already set.

BAD COMMAND (Editor)
An illegal command letter was used on the command line.

BAD COMMAND <ZBUGJ
You are not using a ZBUG command.

BAD LABEL (Assembler)
The symbol you are using is (1 J not a legal symbol , (2J not
terminated with either a space, a tab, or a carriage return,
or (3J has been used with ORG or END, which do not
allow labels. C4J longer than six characters.

BAD LINE NUMBER (Editor)
You are using a line number that is not in the range of
1-63999. If you are loading a file from tape, this could
mean the tape is bad or the tape does not contain a TEXT
file.

BAD MEMORY (Assembler)
You are attempting to do an in-memory assembly which
would (1 l overwrite system memory (an address lower
than hexadecimal 0600), (2) overwrite the edit buffer or
symbol table. (3) go into the protected area set by
USRORG, or (4l go over the top of RAM.

If using the /AO switch. check to see that you've included
an ORG instruction. When using /MO, check the
addresses you set for BEGTEMP and USRORG. This
could also be caused by the data not being stored cor
rectly because of some code generated by an in
memory assembly. See the Chapter on Assembling for
more information.

BAD MEMORY <ZBUGJ
The data did not store correctly on a memory modifica
tion. This error w ill occur if you try to modify ROM
addresses, or store anything beyond MAXMEM.

BAD OPCODE <Assembler)
The op code is either not valid or is not terminated with
a space. a tab or a carriage return.

BAD OPERAND <Assembler)
There is some syntax error in the operand field. See the
syntax for the instruction in Section II.

BAD PARAMETERS (Editor)
Usually, this means your command line has a syntax
error.

BAD PARAMETERS <ZBUGJ
You have spec ified a filename greater than eight
characters.

61

BUFFER FULL <Editor)
There is not enough room in the Edit Buffer for another
line of text.

BUFFER EMPTY (Editor)
The specified command requires that there be some text
in the Edit Bulfer, and there isn·t any.

BYTE OVERFLOW <Assembler)
There is a field overflow in an 8-bit data quantity in an
immediate operand. an offset. a short branch, or an FCB
pseudo op.

DP ERROR <Assembler)
Direct Page error. The high order byte of an operand
where direct addressing has been forced (,,.J does
not match the value set by the most recent SETDP
pseudo op.

EXPRESSION ERROR (Assembler and Z BUGJ
Same kind of syntax error in an expression or division
by zero.

FM ERROR <Editor and Z BUGJ
File Mode Error. The file you are attempting to toad is not
a TEXT file (if in the Editor) or a CODE file (if in ZBUGl.

1/0 ERROR (Editor and ZBUGJ
lnputfOutput error. A checksum error was encountered
while loading a file from a cassette tape. The tape may be
bad. or the volume setting may be wrong. Try higher.

MISSING END <Assembler)
Every assembly language must have END as its last
command.

MISSING INFORMATION <Assembler)
(1 J There is a missing delimiter in an FCC pseudo op. or
C2l There is no label on a SET or EQU pseudo op.

MISSING OPERAND <Assembler)
One or more operands are missing from a command
requ,ring one.

MULTIPLY DEFINED SYMBOL <Assembler)
A label has been defined more than one time.

NO ROOM BETWEEN LINES <Editor)
There is not enough room between lines to use the incre
ment you've specified. Specify a smaller increment or
renumber (NJ the text using a larger increment. Remem
ber that the last increment you used is kept until you
specify a new one.

APPENDIX D / EDITOR ERROR MESSAGES

NO SUCH LINES (Editor)
The specified line or lines do not exist.

REGISTER ERROR <Assembler)
(1J No registers have been specified with a PSH! PUL
instruction, C2l A register has been specified more than
once in a PSHiPU L instruction. or (3) There is a register
mis-match with an EXG!TFR instruction.

SEARCH FAILS (Editor)
The string specified in the Find (Fl command could not
be found in the edit buffer, beginning with the line speci-

62

lied. If no line is specified the current line will be used.

SYMBOL TABLE OVERFLOW <Assembler)
(1 l The symbol table will extend past USRORG into the
protected area of memory. C2l There is not enough room
between BEGTMP and USRORG for the edit buffer and
symbol table. At least 300 hexadecimal bytes must be
allowed for BEGTMP. (See the chapter on Assembling.)

UNDEFINED SYMBOL (Assembler)
The symbol in the program was never listed in the label
field or defined with an EOU statement.

________________________ _.F-D~A=M+

Appendix E/Memory Map

DECIMAL HEX14B CONTENTS DESCRIPTION
0-105 0-69 Direct Paac RAM Can be used for machine-code proarams.

112-255 70-FF Cannot be used for machine-code proarams.

256-273 100-1 11 Internal Use Interrupt vectors.

274-276 112-114 USRJMP Jump to BAS1c·s USR rouline. - -
277-281 - 115-119 Can be used for machine-code programs.

282 11A Keyboard Alpha Lock O - not locked: FF locked.
283-284 118-11C Keyboard Delay Constant

285-337 110-151 Can be used by machine-code programs.
338-345 152-159 Keyboard Rollover Tables

346-349 15A-I 5D Joystick Pot Values

350-10~3 15E-3FF Internal Use

1024-1535 0400-05FF Video Text Memory

1536-/op of RAM 0600-lop of RAM If the Editor-Assembler is in control, it allocates these Random Access memory

/apof RAM is top of RAM is addresses in this manner (see the /MO and /AO switch in Chapter 4 for information on

16383 for 16K 3FFFfor t6K how lo change this):

systems: 32767 systems: 7FFF 1. Temporaries Space reserved for temporary storage of EDTASM·s
for 32K systems tor 32K systems variables buffers. and stacks <this consumes hexadecimal

200 bytes).

2. Edit Butter Storage space for the program lines you insert wrth the
Editor.

3. Symbol Table Storage space for all the symbols in your program and
their corresponding values.

4. Object Code Storage space for your assembled program.

If BASIC 1s in control. tt affocates these Random AOC'.ess memory locations in this
manner;
1. Graphics Video Space reserved for graphics video pages. 6M4 bytes or

Memory 4 pages are reserved for this on start-up. This value can
be reset by the PCLEAR statement: number of pages
reserved by PCLEAR X 1,536 bytes per page. CNotc: Afl
pages must start at a 256-byte page boundary i.e .• a

1--
memory location divisible by 256.l

2. BASIC Program Space reserved tor BASIC Programs and Variables.
Storage 6455' bytes (16K systems) or 22,839. bytes C32K

3. BASIC Variable systems) are reserved for this on start-up. This value can

Storage be reset by different settings of Random File Buffers,

4. Stack FCBs. Graphics Video Memory. Stnng Space or User
Memory.

I
5. String Space Total space for string data. On start-up. 200 bytes are

- reserved. but this can be reset by the CLEAR statement.
6. User Memory Total space for user machine-language routines. No

space is reserved for this on start-up. but this can be

- resel by the CLEAR statement.
32768-40959 8000-9FFF Extended COLOR BASIC Read Only Memory

ROM -
40960-49151 AOOO-BFFF COLOR BASIC ROM Read Only Memory
49 152-57343 ~ COOO-DFFF EDTASM , ROM Read Only Memory

=j 57344-65279 EOOO-FEFF Unused - I FFOO-FFFF 65280-65535 lnpul!Output -

63

APPENDIX F / ROM ROUTINES

Appendix F / ROM Routines
The Color BASIC ROM contains many subroutines that
can be called by a machine-language program. Each
subroutine will be described in the following format:

NAME- Entry address
Operation Performed
Entry Condition
Exit Condition

Note: The subroutine NAME is only for reference.
It is not recognized by the Color Computer. The
entry address is given in hexadecimal form; you
must use an indirect jump to this address. Entry
• ind Exit Conditions arc given for machine
language programs.

BLKIN = [A006l
Reads a Block from Cassette
Entry Conditions
Cassette must be on and in bit sync (see CSROONl.
CBUFAO contains the buffer address.

Exit Conditions
BLKTYP. which is located at 7C. contains the block type:

O = File Header
1 - Data
FF - End of File

BLKLEN. located at 70. contains the number of data
bytes in the block <0-255).
z· = 1. A= CSRERR - O (if no errors).
z - 0. A-CSRERR - 1 (if a checksum error occurs).
z = o. A- CSRERR = 2 Cif a memory error occurs).

Note: CSRERR- 81

Unless a memory error occurs. X - CBUFAD a BLKLEN.
If a memory error occurs. X points to beyond the bad
address. Interrupts are masked. U and Y are preserved.
all other modified.

• Z is a flag in the Condition Code (CC) register.

BLKOUT = CA008l
Writes a Block to Cassette
Entry Conditions
The tape should be up to speed and a leader of hex 55s
should have been written if this is the first block to be writ
ten after a motor-on.
CBUFAD, located at 7E. contains the buffer address.
BLKTYP. located at 7C, contains the block type.
BLKLEN. located at 70 . contains the number of data
bytes.
Exit Conditions
Interrupts are masked.
X -CBUFAD + BLKLEN
All registers are modified.

64

WRTLDR = lAOOCJ
Turns the Cassette On and Writes a Leader

Entry Conditions
None

Exit Conditions
None

CH ROUT= lA002J
Outputs a Character to Device
CHROUT outputs a character to the device specified by
the contents of 6F (OEVNUMl .
DEVNUM ~ 2 (printer)
DEVNUM - O Cscreenl
Entry Conditions
On entry. the character to be output is in A.

Exit Conditions
All registers except CC are preserved.

CSRDON = CA004l
Starts Cassette
CSRDON starts the cassette and gets into bit sync for
reading.
Entry Conditions
None
Exit Conditions
FIRQ and !RO are masked. U and Y are preserved. All
others are modified.

GIVABF = CB4F4J
Passes parameter to BASIC
Entry Conditions
D = parameter

Exit Conditions
USR variable- parameter

INTCNV = CB3EDl
Passes parameter from BASIC
Entry Conditions
USA argument= parameter
Exit Conditions
D = parameter

JOYIN = CAOOAJ
Samples Joystick Pots
JOYIN samples all four joystick pots and stores their val
ues in POTVAL through POTVAL + 3.

Left Joystick
Up/Down 15A
RighVLeft 15B

Right Joystick
Up/Down 15C
RighVLeft 15D

_~_P_P_E_N_o_,_x_F_I _R_o_M_R_o_u_T_IN_e_s ______________ ... _u ,a=M+

For Up/Down. the minimum value = UP
For Righi/Left, the minimum value- LEFr.

Entry Conditions
None
Exit Conditions
Y is preserved. All others are modified.

POLCAT = IAOOOJ
Polls Keyboard for a Character

65

Entry Conditions
None
Exit Conditions
Z = 1, A = O (if no key seenJ.
Z = 0, A = key code. (if key is seen).
B and X are preserved. All others are modified.

________________________ ___.F-D·b..:M+

Absoo.Jle Origin Switch • . 15
ABX (Add Accumvl.:'ltor 8 into lnOOK R<:gistur X> 39
AOC (Add with C3tl)• in10 AogtSlt»1) . . . • 39
AOD CA6d Memory 1nLc Register) 39

as, :J9
16,B•t . 39

AaCffCSStllQ Modes •. .. ' . . . JO
Oi~ Addressing ... J2
C.xtended Ad!::lressin{J , , • 31
Indexed Mdressin;:i 31
lnhflrent Addressin-J 31
lr,,meootc AC1drCSS1ng . . 3 1
Relative Add'.rossing 32

ANO {Logicol AND Memory into Aenister) 39
A.NO <Logical AND lmmedi.;lle Memo,y into

Cc).'ldiucri Code AegLster) 3!'J
A Regis!~ 29
Arithmetic: QriP.rators • . •.... •• .. 22
ASCII U,ode 5
ASL (ArithmebC Shift LoJU 39
ASR CAnthmctlc Shd! RiglltJ . • 40
Assembler Commands IAp;mndix Bl !:18
Assombl+ng . . • • . 13. 1!>. 25
.r\SS(!mbhng 11 Mmnor1 Swildl 13
As~mlJly Lang~e Pronram 30

Corrvn.:ric!, The 30
OperonCI. The 30

Addressing lv10de-s • 30
Oirect Addressing 32
Extended Aridressing 31

Extended lnc;lireC1 31
Immediate AddrC"'"...sin!; . 31
Indexed AodrCS$ing ... 31

lnctc1ted lnd1ree1 A.ddr~ssir~ 32
Inherent Acrd,essing . . . j 1
Ack1two Acxtrassing . . 32

SymOOl rhe . . . 30
BASIC 2o

A.-...•,embling . 25
Exeo.1ting . . 25

$1:;tnd•Arone Progr;)(l'l 25
Baste Sutirou1ioo ?n

P:.l~serig Pmarneters ?6
LOOCMQ 2!>
RQvising . . • • 2 !>

8.4SIC Commano . . 1 !
BASIC Subroutine 26
BCC (Brnrx;h nn Carry Ooor> 40
BCS <Bmnch on C,arry Sot> ,10
BEGTEMP, setting . 15
BEQ {8'0fldl Oil (Qu:ll) 40
BGC (81'.'W"lCh on Greater lhfln or ErjtJl'll lo 7ero) 40
SGT (8ranc:h on Grn,1ter) 40
SHI CBranc-.h if Higher) ,10
BHS <Br,anch tf Higher 01 Some) . -11
SIT<Btt Test) 41
Bl.E (Branc."l on L.e.ss than or Equal to Zero) . ~ I
BLO (8t.lf"ICh on lower>: ;
BtS lBl'nneh on Lower or S,1me) 41
0Ll (Branc..1l on Less than ZP.ro} .. 41
B-MI !Branch on Minus) . 4 1
BNE (Branch Not EQuJJ) •12
BPUBranch on Plus) ,12
SRA IBroncn Always> 4/
8re-..,kpoin1s. sclting 18
B Reg(;!c,1 . . • . . . • . . , 29
BAN C8ranch Never} 42
BSR (Branch to Subroutine) .. 42
eve (Brnnch on O•:erftow Oooo . .. ~2
Byte r ... 1000 . 5

INDEX

CC Register
C (Carry)
E <Entire Flagl •
F (Fatt lntcrrup1 Acouosi Mask>
H (Half Carty) .
I UutorrupO
N (Nugative) .
V (OveM!owl ..
2 CZem>

Changing Memory , •

29
. 20
. 29
. 29
. 29

29
. 29
. 2'J
. 29

6
CMP (Q,mp;ire Memory from Rc,g1s1crl

8•8it . .,,
16·811 4:)

COM tComi:M:moou , .:.3
C~nds 9

A.-...w.ml:xer Comm1ux1s (Aopenclix 8) 58
Copy Commrind • 1 1
OP.let e Commnnd 1 1
Edit ~nd 1 0
Editor Comm31cs (.,\peo-1C:1x A) . . . 55
lnsc11 Command 1 1
Load Comma11d . . 1 O
Pr,nt C()!'l'ln'li)f'ld 10
Pnntl'!r Comm;mds I O
H"enumber Commnr(I 11
Rel)!ar.:e Command , • 11
Vlrite Command 9
78UG Command 11
28UG Commonds CA.opcndix C> 59

Comixax Ooerations . ?~
Copy Command . . . 1 1
CWAJ <Oe11r CC bits and Wad for Interrupt) , 4J
OAA (Decimal Additio11 Adjusl} . . . , . ~3
DEC COecrcmcnlJ . ~4
Oirect Addrcs!:iog 32
Oisotay MOde-s . • • i 7

HiJII-SymbQlic Mode 17
Numeric MOOe I 7
Symbolic Mode I 7

Deleie Commn.nd . . . 1 1
OP Reni~tC(. 29
Edit Corrmand 10
&::mar CommRnds (APQenO•)(A) .. • 55
tditor E;mr MessagesCAppcoo,x 0> 61
END 35
EOR <Exch.,sive OR) . 44
EOU •• 3~
ExamiOtfll) MOd&S . . 5

ASCII M.odc 5
Bvto Mode . . . 5
Vnooxmic: Mooe 6
Word Mor!P. , 5

Executing ?S
BASIC Sub<oulino . . . 26

Passing Parameters . . 26
S!and-Alone Progr~m . , 25

EXG <Exchange Registers) . . <l-1
t'.xtunded Addressinri 3 1

Exter:ded Indirect 3 1
ExtenOO(f tndirecc 31
FCB 3,
FCC 35
!:OB 35
FIAO (F"a..<;1 lnlP.rn1pt AeQ"..iesO liofdwaro 50
Flags

C <Carry)
E (Ent.re A~)
F (Fosl lntc,rupt Reauest M;lsk)
H (HDI! CatryJ ..
I lh'll8rrupl RPcrues1 Mask)

67

.. .. 29
29
29

. 29
.. 29

N (Negatiw;i} 29
V <Overflm\!) • . • • • • . 29
z CZP-rol• 29

Go Command 11
Hllll•Svmbo!ic iV,odo I 7
Immediate Addr'OSSing • • . , 31
INC Unctomcno 44
lncl~xed Addressing . . . 31

Indexed Indirect Acxlressing 32
lnOOxed lndir~ Add;essing . . . , • 32
Inherent Addressing 31
lnl)Vl MOdc • . . • . . . • . • • . . . • • . 21
lnse11 Co, nmand 1 t
lnsl.Juc1ion Set 3;,

Oefirtition of Terms . . J7
Addressing MOdes • . . 37
Cond111on Cooos 37
OcscripllOn • 37
OoOfati~ 37
Source Forms 37

Notati()(ls ;-n)d Code.", . . • . • • • • 38
m"'Q tl r1turrupt Request) Hardw;)(u . . • • 5 1
JM? Uul1'¥)) 4t
JSA (Jump 10 SubrounneJ M
LO <Load Aen..stcr from Memoty)

p,.s ,
16 8 1t . . . • • •

LEA (Load CttactM! Andress) .. .
t.isting Switches

... ,:,4
.. 45

. 45
13

load C0m'nand • • • • • • • • • I 0
Loading
Logical Operators
LSL Clogic:r.! Shi ft Lett)
LSR (L()'iliC31 Sh,ft A,ghU
Mant.ml Onoin Svrtch
Memory

So,..ing r-.1 omory
Trai,s'ening a Block o! Mcmo,,y

Momoty Map (Appendix El
Microproces$0f ,

Registers ..
A and B Aeg1s1ers ..

2,
22

. 4S
.. 45

15
. 19

.......... 19
19
63
29
29
29
29 CC Atgrster

OP Register .. • • •• . :29
PC: Aeg.ister
U and S Renisters ..
x ;ind Y Regis1crs ..

i\-1.nemonic Mode
Mode~

Adc.resSl"'lg MOdes .. •.. • . .
Extended Actirrissinn
Oirl!d Addressing ..
Inherent Addressing
Immediato Addressing
Indexed Aeklressing
RClowa Addres~inrr

()-splay Modes
Hall-Symbolic MOde

?9
29
29
G

30
31
3?
31
31
J I

... 32
17
17

Nume,ic Mode I/
Symbollc MOClc

NUT1beri~ System Mocres
lnput
Output ..

MUL (Mulliply) ..
NEG (Negate) •
NMi (NCf°I-Mask.able fnterrupt> l·fardwcre
No Otiioct COde Switch
NO!!' (No Operation)
No!Rlions and Coces

17
21
21

... 21
45
46

.. 51
1G
•6
;)s'l

Numt::ering Sys-tem Mcdes
Input Mode
01,!iput Mode

Numcr~ MOOc
()pe(3rXI. Tho

/1.dd1oss1ng JIOOOs
Operands
Opora11ons

Complex Opr.ral:te'lns .
Operonrts
Qpero1ors

Arithmehc Opcr.:itors .
RclahOOtll Oo~rnto-s .
Logical Operftlors

Ooc,mors
A1ithmel1c Opemtors
Logical Oper~lor!',
Rcl.itional Ooer.nors

ORG
on Unclu$i\'O OR Memory lfltO AcgrSICO
OA (lncluSi\'C OA Memory lm1~,001oto illlO

21
2 1
21

. 17
.... 30

. 30
?1

. 21
?J
21

. 22

. 22
. . 22
. . ?2
. ??

??
22
22
35
45

ConcM10,, COdi: ~cgisterJ 4G
Outuut Mode . ? l
P-.dl'am!:!ters. Passing 26
PC Register . . . ?9
Print Comm:md 10
Pnntcr Commancs . . 10
PSHS <Pusll Registers ,n the Hordwaro Staci<> 46
PSHU CPush Registers on Lllfr Use-r Stackl .. 46
~evdo Operations 35

Oehnilion ol Terms 35
ENO .. 3!j
EDU :\5
FCS 3~
FCC 3$

FD9
ORG

.... .. 35
35

m111a 35
SET 36
SCTOP... 36

PULS (Pufl Rngistms from :he Htlrdvl.lre S~ck) 4 7
PULU (Pull Reg1::.tP.rs 1mm the User SWck) .,
Aagi"Slars

A and B Registers
CC Rer;is1or
DP Rcoistet . .
PC RcQ,ste< ..
u aria: S Rcgistt"'S
X 3flC Y RcgistOf'S

Rcgist1.."'S and I-tags. exnrnining
A81atona1 Opem1ors
Re1a1,ve Addrnssil"'!l
Rem,mber Comm(lnd
Replnce Comm{YIO
RESTNn Har(!WO(C
Rc•;isin::i
AMS
ROL (Rolate l.EJtU ..
fi:0\0: Roul'Tie (Appendix FJ
P08 (AolfltP. Right>
RTI (Return from Interrupt>
RTS <Re1um from Sutirouttno>
Sample Progrom ..
Soving Memoiv
SBC CSubtr.:iCI w11.1'1 lklnowJ
SET
SCTOP
SLX (Sign Extended}
Ge09 Instruction SI:!•
S Register

68

. . 29

.. 29

.. 29
. .. 29
.. ?9
.. ?9

?9
18

.. 22

.. J2
1 1

. . . . 1 1
. . 51

25
3;
4/
64

S1:ind-Alone Progmm
ST <StnrP. Register into MemQry)

8-Bit
16•8it ,

SUB <Svb1ract \~cmol)• trom Register)
6 B1l
16,Bit

$Wl
lSouware lntHrrupt)
lSoltware lnt1?rrup1 ?>
lSottware l1'1'tP.m1pt 3)

Switche~
A,-;sembling sn Memory
Ahoolute Origin
Lisun.g
Mooual Ongin
No Obiec:, Switch
\A/ail on Errors

Sym~ol. ThP.
SYNC <Synd"lroni7e to Extcmol Event)
Symbnl.,C MQoe
TFR CTm.1sfcr fler; tS1cr to Rcg,s:ico ...
Tronstemng ~ BlOCk 01 Memo,-,,
TST ITest)
U RegistC!
USORG. SClll"lg
1/-.'art On trrors Switch
Viard Mom~ ..
¥hi!.! Command
X Regis;er
Y Rr.gimer
ZBUC

ca1cura1or
Comtt1an-J

ZOUG C~rnrnlnds (Appendix C)

. 25

.. -18

.. .!8

49
49

.. . 40

13
15
13
1;
16
13
30
50

. 17
50
19
50
?9
lo
13
5
9

29
?9

21
II
o9

	xEdtasmPage01.JPG
	xEdtasmPage02.JPG
	xEdtasmPage03.jpg
	xEdtasmPage04.jpg
	xEdtasmPage05.jpg
	xEdtasmPage06.jpg
	xEdtasmPage07.jpg
	xEdtasmPage08.jpg
	xEdtasmPage09.jpg
	xEdtasmPage10.jpg
	xEdtasmPage11.jpg
	xEdtasmPage12.jpg
	xEdtasmPage13.jpg
	xEdtasmPage14.jpg
	xEdtasmPage15.jpg
	xEdtasmPage16.jpg
	xEdtasmPage17.jpg
	xEdtasmPage18.jpg
	xEdtasmPage19.jpg
	xEdtasmPage20.jpg
	xEdtasmPage21.jpg
	xEdtasmPage22.jpg
	xEdtasmPage23.jpg
	xEdtasmPage24.jpg
	xEdtasmPage25.jpg
	xEdtasmPage26.jpg
	xEdtasmPage27.jpg
	xEdtasmPage28.jpg
	xEdtasmPage29.jpg
	xEdtasmPage30.jpg
	xEdtasmPage31.jpg
	xEdtasmPage32.jpg
	xEdtasmPage33.jpg
	xEdtasmPage34.jpg
	xEdtasmPage35.jpg
	xEdtasmPage36.jpg
	xEdtasmPage37.jpg
	xEdtasmPage38.jpg
	xEdtasmPage39.jpg
	xEdtasmPage40.jpg
	xEdtasmPage41.jpg
	xEdtasmPage42.jpg
	xEdtasmPage43.jpg
	xEdtasmPage44.jpg
	xEdtasmPage45.jpg
	xEdtasmPage46.jpg
	xEdtasmPage47.jpg
	xEdtasmPage48.jpg
	xEdtasmPage49.jpg
	xEdtasmPage50.jpg
	xEdtasmPage51.jpg
	xEdtasmPage52.jpg
	xEdtasmPage53.jpg
	xEdtasmPage54.jpg
	xEdtasmPage55.jpg
	xEdtasmPage56.jpg
	xEdtasmPage57.jpg
	xEdtasmPage58.jpg
	xEdtasmPage59.jpg
	xEdtasmPage60.jpg
	xEdtasmPage61.jpg
	xEdtasmPage62.jpg
	xEdtasmPage63.jpg
	xEdtasmPage64.jpg
	xEdtasmPage65.jpg
	xEdtasmPage66.jpg
	xEdtasmPage67.jpg
	xEdtasmPage68.jpg

