COLOR COMPUTER
EDITOR ASSEMBLER
WITH ZEUE‘y

J

TABLE OF CONTENTS

SECTION ONE: USING THE EDITOR-

ASSEMBLER+ T _

Chapter 1 Aotroduction oo risnned Joliiad shins Tl Tmriaas
Chapter 2 / Examirting Memony (oo oo o i s £ da s 54 i o oai

Chapter 3 / Writing the Program

Chapter-d 3 RsemBNg s s s e S L e S P R e

Chapter 5/ Debugging withZBUG TR e ;

Chapter 8 / Using the ZBUG Caloulalor s i s s ssen
Chapter 7/ Running the Program from BASIC ..., .. oiiiiiiiiiiiiine.,

SECTION TWO: 6809 ASSEMBLY

LANGUAGE REFERENCE ...

o &Y

Chapter 8 / 6808 Assembly Language,

Chapter 8 / Assembler Pseudo Operationso oo i,
Chapter 10 6808 Instruchon Set o bt Ui i si i i s @i a e o

SECTION THREE: APPENDIXES .. .

Appendix A / Editor Commands .

Appendix B / Assembler Command & Switches
Appendix C/ ZBUG Commands e
... 81

Appendix D/ Error Messages

Appendix E/ Memory Mapo e
.. 64

Appendix F/ROMBoutinesci0..y

Index N T T M M, S Pt ottt o ol L pe A R E SRl

27

35

a7

a3

DD

58
ob

863

1/Introduction

The brain of the Color Computer is the 6809 Micropro-
cessor. It is always operating in 6809 machine code, the
only language it knows.

When you program in BASIC, a ROM program called the
BASIC Interpreter “translates” each statement, one at a
time, into 6809 machine code.

The Editor-Assembler + allows you to write a program in

6809 assembly language and assemble it into a single,

efficient 68038 machine code program. This gives you

two very powerful advantages:

+ You are no longer limited to the commands in the BASIC
language.

« Many steps that are necessary to interpret a BASIC
statement into machine code will no longer be needed.
Therefore, the programs you write with the Editor-
Assembler+ will run much faster, and probably use
less memaory.

This manual demonstrates how to use the Editor-

Assembler + . It will not teach you how to program in

assembly language. Radio Shack has an excellent book

devoted to the subject. It's Catalog Number is 62-2077.

You can purchase it through any Radio Shack store.

The Editor-Assembler + contains three systems:

+ The Editor, tor writing and editing 6809 assembly lan-
guage programs.

- The Assembler, for assembling the programs into
6802 machine code.

« ZBUG, for examining and debugging your machine
code programs.

To use them, all you need is a Color Computer with 16K
RAM and a tape recorder.

How You Will Use
These Systems

1. First you'll write the program in assembly language,

using mnemonics which the Assembler recognizes
and which is fairly easy to use. This is done in the
Editor and the resulting program listing is called TEXT.

2. Then yvou'll assemble the instructions of TEXT into
machine code which the 6808 Microprocessor can
recognize, but which looks like nonsense to most peo-
ple. Thus, you'll create CODE consisting of op codes
and data.

3. You'll use ZBUG to test and debug CODE until it's per-
fect. Then you'll store it on tape. Storing CODE is the
final task of the Editor-Assembler - |

4, From BASIC, you'll load CODE (with CLOADM) and
run it. You can either run it as a stand-alone program
(with EXEC) or as a subroutine (with USR),

How This Manual
Will Guide You

This manual will walk you through all these steps and also
give you some useful information about your Editor-
Assembler+.

In Chapter 2, we'll explore memory. You'll need this foun-
dation to understand the rest of the manual. We'll do this
with ZBUG.

Chapters 3, 4, 5, and & will show you how to write the
program, assemble it, and debug it. Finally in Chapter 7,
we'll show you how to run the program from BASIC.

If youve used other editor-assemblers, you might want to
start with the Appendixes. There, youll find all the com-
mands summarized with page number references.

And Now Let’s Get On
With It...

To use the Editor-Assembier + | follow these steps:
1. Tum OFF the computer.

1/ INTRODUCTION

2. Insert the ROM pack into the slot on the right side of EDTASH+ 1.0

the computer, COPYRIGHT @© 1981 BY MICROSOFT
3. Turn the Computer ON. *
When you turn the computer OM, you will see: The asterisk prompt (*) tells you that the Editor is now

available. We say you are “in"the Editor,

2 /| Examining Memory

To use the Editor-Assembler +, you must have a good
understanding of the Color Computers memory. You will
need to know about memory to write the program,
assemble it, debug it, and execute it.

In this Chapter, we'll explore memory and see some of
the many ways you can get the information you want. To
do this, well use ZBUG.

Type:
7 [ENTER)

and ZBUG will display its # prompt. You are now “in”

ZBUG and you may enter a ZBUG command.

All ZBUG commands must be entered in this command
level. You can retumn to it by pressing (BREAK) or (ENTER.

Examining a Memory Location

The 6802 can address 65,536 one-byte memory loca-
tions, numbered 0-65535 (0000-FFFF hexadecimal).
We'll examine hexadecimal location CO00. the beginning
of the Editor-Assembler program. Type:

Caan /s

LDA #6 is the "mnemanic” instruction that begins at loca-
tion COOO,

To examine the next instructions, press the (=], Use the
(= to get back to a preceding location. Notice that when
you use the (=] the screen continues to scroll down. The
smaller addresses are displayed at the bottom of the
SCreen.

Also notice that the (=) will increment by more than one
byte in this particular examination mode. More on this in
the following pages.

The (=1 however, will always decrement the address by
one, regardless of the examination mode.

All the numbers you see are hexadecimal. Hexadecimal
means base 16. You will see not only the ten numeric dig-
its, but also the six alpha characters needed for base 16
(A-F). ZBUG assumes you want to see base 16 numbers
unless you specify ancther base (which we’ll do in
Chapter 6).

MNotice that a zero precedes all the hexadecimal numbers
beginning with an alphabetic character. This is done to
avoid any confusion between hexadecimal numbers and
registers.

Examining Modes

To help you interpret the contents of memory, ZBUG
offers four ways of looking at it:

Byte Mode

Type (BREAK) to get into the command level and then type:
B (ENTER
Examine the contents beginning at location CO00 again.

LDA #6 is now represented as a number. B6 is the op
code for LDA. The operand, 8. is in location CO01.

The byte mode displays every byte of memory as a num-
ber, whether it is part of a machine language program
or data.

In this examination mode, the (= increments the address
by one.

Word Mode

Get back into the command level and type:
li [ENTER!

Look at the same memory. Press the (=] key a few times.
The numbers are the same, but you are seeing them two
bytes or one word at a time.

Here, the (= increments the address by two.

ASCIl Mode

From the command level, type:
& (ENTER,

ZBUG is now assuming that the contents of each mem-
ory location is an ASCIl code, If the "code” is between 21
and 7F (hexadecimal), ZBUG displays the character it
represents. Otherwise, it displays nathing.

Examine the locations beginning with CO56. These loca-
tions contain the Editor-Assembler + display heading.

EJiASM -

2 / EXAMINING MIEMORY

Note: ZBUG will also display the AT through FF as
ASCI characters. However, they are not the frue
characters which these codes represent.

Here, the (=) increments the address by ane,

Mnemonic Mode

This is the default mode. Unless you ask for some other
mode, as we have been doing, you will be in the default
mode. To retumn to it, get in the command level and type:

M [ENTER
Look at the locations beginning at CO00 again. Youll see

the same instructions you saw at the beginning of this
chapter:

coga/ LOS #5
CAB27 5Ta -@FF
efc.

i this mode, ZBUG assumes you're examining a
machine lanquage program. It examines memory from
one to five bytes at 3 time by “disassembling” the num-
hers into the mneronics they represent. The number
806 (from locations G000 and COQO01) has been disas-
sembled into LOA #6: BTOOFF (from locations CO02,
C003, and CO04) into STA=-FF; efc.

Begin the disassembly at a different byte, Type (EREAK
coR1/ and press the (=) several times. You will seg a
ditferent disassembly:

cpat. ROR<BET
Cpgays MEGY BFF
eto.

The contents of memory have not changed. ZBUG has,
however, interpreted them differently. The number 0687
(from locations C001 and CO02) has been disassembled
inta ROR-0B7: OOFF (from locations C003 and CO04)
has been disassembied into NEG--0FF; eic.

To see the program correctly, you must be sure you are
beginning cn the correct byte. Sometimes, several bytes
will contain 77. This means ZBUG can't figure out what
instruction is in that byte and is possibly disassembling
fram the wrong point. Unfortunately, though, the only
sure way of knowing it you're on the right byte is by know-
ing where the program starts.

Changing Memory

As you look at the contents of memory locations, notice
that the cursor is to the right. This allows you to chanige
the contents of that location. After typing the new con-
tents, press (ENTER) or (= and the change will be made.

Eor an example of changing memory, well open a loca-
tion in Random Access Memory (RAM). Up to now, we ve

only been examining locations in Read Only Memaory
(ROM) which we can't change. Get into the byte mode
and open location 10AA by typing:

‘BREAK! © |ENTER

1BAAS

MNote that the cursor is to the rnght. Type:
1 [ENTER
and the location now contains a 1. You can accomplish
the same thing by typing:
1BAA /S
and then:
on (e

which changes the contents to DD and allows you to
change the next location. (Press (=] to see that the
change has been made.}

The size of the changes you make will depend an the
examination mode you are in. In byte mode, you will
change one byte only and can type one or two digits.

I the word mode, you will be changing one worrd at a
time. Any ane, two, three or four digit number you type
will be the new value of the word.

if vou happen to type a number wiich is also the name cf
ore of the 6809 registars (A.B D.CC DR X, Y,U,5,PCJ,
ZBUG will assume it's a register and give you an
"EXPRESSION ERROR. To avoid this confusion, type a
leading zerc (0A.0B.etc.).

To change memory in the ASCIl mode, use an apos-
trophe before the new letter. For example, to write the iet-
ter A in memory at location 0000, type:

& [ENTER!
to go into ASCII examination mode, type:

aada s
to open that location and type:

‘& =]
to change it. Typing the (= will assure you that the loca-
tion contains the letter A.

If you are In mnemonic mode. you are expected to
change one to five bytes of memory depending on the
length of the particular instruction. Things get just a bit
complex in mnemonic mode because you can't use mne-
manic assembly language instructions. You must use the
op code equivalent instead.

For example, get into the mnemonic mode and open
location 1000, Type:

M (ENTER
1000/

To change this instruction, type:
& (ENTER)
MNow location 1000 contains the op code for the LDA
instruction. Open location 1001:
1001/
and insert 08, the operand:
@& (ENTER)

Upon examining !ocation 1000 again, youll see it now
contains a LDA #6 instruction.

Exploring the Computer’s
Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Appendix E.

The tollowing activities will allow you to become familiar
with the Editor so don't be afraid to try commands or
change memory. You can restore anything you alter by
simply turning the computer OFF and ON again.

EiASM-E

3/Writing the Program

To write assembly language programs, you will use the
Editor. You can enter it by powering-up, pressing RESET,
or (from ZBUG) typing E ([ENTER). The asterisk prompt tells
you that the Editor is available for commands, We say
you are "in"the Editor.

The Editor has quite an assortment of commands to
assist you. To use any of them, you must be at command
level, as you are now. You can return to this command
level by pressing (BREAK.

Sample Programming
Exercise

For those of you new to editor-assemblers, we're includ-
ing this sample programming exercise. We'll be referring
ta it in our examples throughout the manual. If you've
used other editor-assemblers, you may skip this exercise
and begin reading about the Write command.

To get started, type:
I |ENTER]

Even though you have not typed anything yet. the Editor
thinks that you are inserting lines into an already existing,
although empty, edit buffer.

The Editor will respond with a line number. This line num-
ber is for your convenience while in the Editor and will not
affect the machine language program at all.

To insert a comment line, type an asterisk and comment
away. For example, insert this line:

PB1PE =THIS IS5 A COMMENT LIME [ENTER)
The Assembler will ignore comment lines. You may type

as many of them as you wish to explain your program to
passing humans without confusing the computer,

You may delete this line and start over by pressing (BREAK)

to get back into the command level and then typing:
D100 (ENTER

To type a program line, you will use four fields: the sym-

bol, command, operand and comment fields. You can tab
from ane field to the next by pressing the (%] key

Insert this program line, using the (%] key to tab from one
column to the next:

BRIP® GSYMEOL CMD OPERANDCOMMENT (ENTER)

The symbol, command and operand fields must be ter-
minated by a tab, space or carriage return. The symbaol
may be up to six characters. The comment is optional.
The maximum line length is 128 characters. Note that
long lines will “wrap arcund” your screen to the next line,

Delete whatever lines you have in the edit buffer and
insert the following sample program. You may omit the
comments, if you like:

PB1@@ GSTART LCA =%BF3 LOAD ASCII CHAR
2@11@ LOx #8508 BEGIN VIDED MEM
08128 SCREEN STA 3+ PUT CHAR ON SCREEMN
0A13a@ CHMPR #85FF GEE IF END VIDEQ MEM
R142 BNE SCREEN BRANCH IF NOT

@@ DOME SKWI

2016@ END

This stores graphics character number F9 into video
memory locations 500-5FF The dollar symbaol (¢) indi-
cates a hexadecimal number. Without this symbol, the
Editor will assume the number is decimal. (Note that the
Editor defaults to decimal, whereas ZBUG defaults to
hexadecimal.)

A description of all the other symbols, as well as the 6809
instructions, are in Part Two, "6802 Programming Ref-
erence Section.’

Write Command
W filename

To save the sample program to tape (before making any
experimental changes), type:

W S4MPLE (ENTER

You will be prompted with "READY CASSETTE". When
the recorder is ready to record (i.e., you have inserted a
tape and pressed PLAY and RECORD), type (ENTER). Your
program will be saved as a "TEXT file.

3/ WRITING THE PROGRAM

If you don't give your tile a name. the default name
NONAME will be assigned. It is a good idea to use file-
names, especially if you will be storing more than one file
on a single tape. Filenames may be up to eight charac-
ters long and must begin with a letter of the alphabet,

We recommend that you make a copy of your program
before executing it. An assembly language program is
not nearly as forgiving as BASIC. Executing the program
with even a very small bug might result in eraging the
entire edit buffer. In less than a second, many hours of
editing and trial assembly can be completely obliterated!

After writing the file, it is useful to verify the tape with the
V command. This command verifies the checksum on the
tape. This verification could save frustration when saving
long programs. The V command is listed in Appendix A.

Load Command

L filename

To load the TEXT file from tape, type:
L SAMPLE (ENTER

You will be prompted to get your cassette recorder ready.
(Rewind the tape and press PLAY.) When you press
[ENTER), the recorder will begin searching for a file named
SAMPLE. If you just want the first file. or whatever file is
next on the tape, you may omit the filename.

This command will load a TEXT file only. (You will use the
BASIC CLOADM command to load your assembled
CODE file.)

Note: The Editor does not automatically empty its
buffer before a LOAD. If a program is currently in
memaory. the program being LOADed will be
dppended ta the one in meamory,

This can be useful for chaining long programs,
When the second file is loaded, simply renumber
the file (e, NT10Q, 1002

if you do not desire this, empty the buffer before
loading & new program (Le., D# ")

Print Command

Prange

To print a line of the program on the screen, type:
P10 (ENTER)

To print more than one line, type:
F100: 130 (ENTER

Since the first ling, last line, and current line are very
often referred to, you can refer to them with a single
character:

= first line

lastline
current line (the last line you printed or inserted)
To print the current line, type:
F. (ENTER
To print the entire text of the sample program, type:
Px:% ET_EE;

This is the same as P10@: 1 6@ (ENTER.

The colon separates the beginning and ending lines in a
range of lines. Ancther way to specify a range of lines is
with 1, Type:

Fe15 (ENTER
and five lines of your program, beginning with the first
one, will be printed on the screen.
To stop the listing, you may quickly type:

SHIFT) &

Ta continue, press any key.

Printer Commands
Hrange

Trange

i you have a printer, you can print your program with the
H and T commands. Both are closely related to the
P command.

H=:* (ENTER)

will print every line of the edit buffer to the printer. You will
be prompted with:

PRINTER READY
and you should respond with ([ENTER' when ready,

T10R!G (ENTER
will print six lines, beginning with line 100, to the printer,
but without the Editor-supplied line numbers,

Edit Command
Eline

You can edit lines in the same way you edit Extended
BASIC lines. For example. to edit line 100, type:

E122 (ENTER)

The new line 100 is below old line 100 ready to be
changed.

Press the (SPACEBAR’ to position the cursor just after
START and type this insert subcommand:

IED (ENTER]
which inserts ED in the line,

All the edit subcommands are listed in Appendix A.

10

EJASM-

Delete Command
Drange

It you are using the sample program, be sure you have
written it on tape before you experiment with this com-
mand. Type:

G11@:14@ ([ENTER
Lines 110 through 140 are gone,

Insert Command
|startline.increment

Type:

1152 +2 [ENTER
You may now insert lines beginning with line 152, Each
line will be incremented by 2. (The Editor will not allow
you to accidently overwrite an existing line. When you get
to line 160, it will give you an error message.)
Press (BREAK to return to the command level and type:

1170 (ENTER
This allows you to begin inserting lines at the end of the

program. Each line will again be incremented by 2, the
last increment you used.

Type:

The Editor will begin inserting at the current line.

On start-up, the Editor sets the current line to 100 and the
increment to 10. You may use any line numbers between
0 and 63999,

Renumber Command
Nstartline,increment

Another command that helps with inserting lines between
the lines is N (for reNumber). From the command level,

type:
N1@0,5@ (ENTER
Now the lines begin with line 100 and are all incremented

by 50. This allows you much more room for inserting
between lines,

Type:
N (ENTER!
The current line is now the first line number.

Henumber now so we will all be together for the next
instruction. Type:

M10@ 1@ (ENTER

Replace Command
Rstartfine,increment

The replace command is a variation of the insert com-
mand. Type:
R1@@ 2 (ENTER)

You may now replace line 100 with a new line and begin
inserting lines using an increment of three.

Copy Command

Cstartline, range, increment

The copy command will save you a lot of typing by dupli-
cating any part of your program to another location in the
program.
To copy lines, type;

CSPR,1@8@:158 .18 (ENTER
This will copy the range of lines from 100 to 150 to a new

location beginning at line 500, with a line increment of 10.
An attempt to copy lines over each other will fail.

ZBUG Command
To exit the Editor and enter ZBUG, type:
£ |ENTER|

A different prompt, the = tells vou that you are now in
ZBUG.

To re-enter the editor from ZBUG. type the ZBUG
command:

E (ENTER]

If vou print your program, you'll see that entering and
exiting ZBUG did not change it.

BASIC Command

To enter BASIC from the Editor, type:
O (ENTER)

for Quit. To re-enter the Editor from BASIC, type:
EMEC 49152 (ENTER)

ar
EXEC AHCERQ (ENTER

which is the same address in hexadecimal. This is the
first address of the Editor. You must use the decimal form
if you have a 4K computer.

Entering BASIC will empty your edit buffer. Re-entering
the Editor will empty your BASIC buffer,

Hints on Writing Your Program:

« Copy short programs unreservedly from any legal
source availlable to you. Then modify them one

11

3/ WRITING THE PROGRAM

step at a time to learn how gifferent commands easier to understand and debug. They can later be
and addressing modes work. Try to make the pro- combined into longer routines.

gram relocatable by using indexed. relative, and

indirect addressing (described in Part 11, Motw: You can use the Sovaria et vour BAGIL

programs, as well as assembly language pro-

Try to write a long program as a senes of short rou- grams. You rmight find this very useful since the
tines that share the same symbols. They will be g§§%5M+ Editor is much more powerful than
LS,

12

EJTASM-:

4 /Assembling

The command to assemble your text program into
machine-code is simple. Just type (from the Editor com-
mand level);

5 FILEWAME (ENTER

If your program is in memary, you will be prompted with:
CASSETTE READY

and when you press (ENTER your cassette recorder will
start. You are assembling the object program on tape for
use another time and place. The Assembler will display
a listing to explain what it is doing. (See Figure 7 for an
expianation of the listing.)

While this is the simplest form of the assemble com-
mand, it is not the one you will use first, You will want to
make absolutely sure the program works before you
assemble it to tape.

There are several options called switches which you can
use to assemble the program for trial purposes. You may
use any combination of these switches, For example:
AJAMAMWE

AWE/LP/NS

A TEST/LP

are all acceptable assembler commands.

WE
Wait On Errors Switch

You will normally want to use this switch. It causes the
Assembler to stop each time it encounters an error n
your program. Press any key to continue the listing.

/SS /NO /NS /NL /LP
Listing Switches

Use these switches if you want the assembler listing
lillustrated in Figure 1) to appear differently:

/S8 Short screen listing

/NO Mo object code in the listing

/NS Mo symbaol table in the listing
/ML Mo listing at all

ILP Listing printed on the printer

/IM

Assembling In Memory Switch

The program will be assembled in memaory, not on tape.
This is usually for a trial assembly.

Where in memory? Used with no other switches, the
Assembler will store your program just after the symbol
table which is just after the edit buffer:

- 0800
EDIT BUFFER
SYMBOL TABLE
ASSEMBLED PROGRAM STARTS HERE
+ 4FFF (16K}
TOP OF RAM 7FFF (32K)

Figure 2. In Memory Assembly

The edit buffer contains your assembly language pro-
gram. It begins at hexadecimal address 0800, and will
vary in size depending on how long your program is.

The symbaol table references all the symbols in yvour pro-
gram and their corresponding values. Its size also varies
depending on how many symbols your program has.

If you typed the sample program, you can try out an in-
memaory assembly. Make sure the program is in the Editor
In its original form. Then, from the Editor command level,
type:

ASIN (ENTER)
(If you want another look. type &/ IM over again. You can

pause the display with SHIFT) (=) and continue with
any key.)

Since this sample program uses START to label the
beginning of the program, you can find its originating

13

@0120 SCREEN

paa? ec BaLaa
CHPX

Q0eA 26 Baid4a

BNE SCREEN
2RAC 3F Q8150 DONE
AR
ooea 28168
END

Aa000 TOTAL ERRORS

DONE gaec

)

SCREEN 2025

-===5=-—'éﬁ

START aeee

(1

The location in memory where the assembled code
will be stored. In this example, the assembled code
for LDA #%F8 will be stored at hexadecimal location
0000,

' The assembled code for the program line. 86F3 is the

assembled code for LDA #%5F0,

2! The program line.
' The number of errors. If you have errors, you will want

to assemble the program again with the /WE switch.

' The symbols you used in your program and the mem-

ory locations they refer to.

Figure 1. Assembly Display Listing

14

g / ASSEMBLING

address from the assembler listing. If you examine it with
ZBUG, youll see that it has been assembled into memory
beginning between 0B00 and 0200.

AQ

Absolute Origin Switch

This switch allows you to absolutely determine where in

memory you want your assembled program to originate.

To use it, you need to have an ORG instruction at the

beginning of your program.

Insert this line at the beginning of the sample program:
POESH ODRG $3FED

Mow type:
AL IMAAD

If you use ZBUG, you'll see that your assembled program
now begins at location 3F00:

+ 0800
EDIT BUFFER
SYMBOL TABLE
+ JFO0
ASSEMBLED SAMPLE PROGRAM
« 4FFF {(16K)
TOP OF RAM TFFF (32K)

Figure 3. /AQ In Memory Assembly

As you can see, the AD switch set the location of the
assembled program only, It did not set the location of the
edit buffer ar the symbol table.

If your ORG instruction has not allowed enough room in
memory for your program, you will get a BAD MEMORY
errar. The assembler cannat store your program beyond
the top of RAM.

/MO
Manual Origin Switch

The manual origin switch offers you maximum control of
In-memaory assemblies. You can use it to assemble the
program using the contents of these two memory
addresses:

= USRORG (which contains the originating address of the
assembled program)
- BEGTEMP (which contains 0600. This is the originating

address of the edit buffer and the symbaol table (which
15 0BO0 minus 200.)

By manually changing the contents of USRORG and
BEGTEMP, youll be able to set the originating address of
the edit buffer and symbol table as well as the executable
program. Since this procedure is somewhat involved, not
everyone will want to use the /MO switch.

To change the contents of these memory locations, you
will need to get into ZBUG. Save the program you cur-
rently have in the Editor first. This procedure will destroy
the contents of the edit bufter.
Then get into the ZBUG word made by typing:

2 (ENTER)

W (ENTER'
and follow the procedures for setting USRORG or BEG-
TEMP (or both of them).
Setting USRORG

On start-up, 00FD points to the top of BAM. |In this exam-
ple. well change it to 2F00. Type:

FI}/

ZFD@ [ENTER
Mow memory locations beginning with 2F00 are pro-
tected from EDTASM + and can be used for your assem-
bied program.

Setting BEGTEMP

On start-up, DOFF points to 0800, In this example we'll
change it to 2000. This will make room for high resolution
graphics and data. Type:

Fe/
2000 (ENTER)
The address yvou put in BEGTELT mu
» a "paae boundary” (a haxadecimal numbear ending in 00)
= greater than 0600
+ at least 300 bytes less than the contents of USRORG

Assembling the Program
To get back into the Editor, type:

GCARE (ENTER
Load the sample program and, if you inserted an ORG
instruction, delete it. Then type:

a/IM/ M0 {ENTER)
This will assemble your program into the address you set
for USRORG and BEGTEMP. If vou followed our exam:-

pies above, this command will assemble your program as
follows:

15

EQJIASVE

« QB0C - .
Hints on Assembling
- Uise a symbol to label the beginning of your
BEGTEMP - + 2200 l_isct by arogram.

Siﬂ;g |l_J ?:ETE Tgift?é,ﬂgppj - Use the ORG instruction only when using the ;AJ
h switch. Used with /M alone or AMMO, the ORG
address will not be the program’s originafing
address. The Assembler will use it to offset (add

USRORG » + 2F00 (set by tal the loading address.
HRRENBLEE Akl ch;ngmg = The /WE switch is an excellent debugging tool.
FROGRAM location FL) Use it to detect assembly errors before debugging

: . 3FFF (16K) Essel
TOP OF RAM (16K) e taate prog

« Asg your program hbrary grows, it helps to use a

_ different system of names to separate your TEXT,

Figure 4. /MO In Memory Assembiy CODE, and BASIC files. For instance, you might
warttouse T, C. or B as the last lefter of each file.

/NO . : « If yvou would like ta exarmine the edit buffer and
No Object Code Switch symbol table after you assemble the program, use
Use this switch if yvou do not want to store any object ZBUG to examine memory locations beginning
code in memory or on tape. with address 0800,

16

5/Debugging with ZBUG

ZBUG has some very powerful tools for a trial run of your
machine language program. You can use them to look at
every reqgister, every flag, and every memory location
during every step of running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 1. We will be
using these commands in this chapter.

Sample Program Exercise

In this Chapter. we'll use the sample program to illustrate
the debug commands. |f you would like to use it and have
not typed it in yet, see "Sample Programming Exercise”
in Chapter 2.

Then insert an ORG $3F00 instruction at the beginning
of the program (reinsert it, if you deleted it) and assemhble
the program using the /AD switch. See the discussion of
the /AQD switch in Chapter 3 if you need help. Then enter
ZBUG by typing "2” from command level in the Editor,

Display Modes

in Chapter 1, we discussed four examination modes.
ZBUG also has three display modes.

Well examine each of these display modes from the mne-
monic examination mode. |f you're not in this mode, type
4 [ENTER..

Numeric Mode
Type:
» ENTER

and examine memaory locations 3F00 through 3F0C,
which contain your program. In the numeric mode, you
will not see any of the symbals in your program (START,
SCREEN, and DONE). All vou see are numbers. For
example, location 3F0DA displays the instruction BNE
3F05 rather than BNE SCREEN.

Symbolic Mode

From the command level, type:
5 [ENTER!

and examine your program again. ZBUG is displaying
your entire program in terms of its symbols (START,
SCREEN. and DONE). Examine the memory location
containing the BNE SCREEN instruction and type:

The semicolon causes ZBUG to display the operand
(SCREEN) as a number (3F05).

Half-Symbolic Mode

From the command level, type:

and examine the program. Now all the memory locations
(on the left) are displayed as symbols, but the operands
(on the right) are displayed as numbers.

Using Symbols to
Examine Memory

Since ZBUG understands symbols, you can use them in
your commands. For example, both of these commands
open the same memory location (no matter which display
mode you are ind:

START/

JF@Aa/

While either of these commands will get ZBUG to display
your entire program:

T START DOXNE

T 3F@@ 3FAC

You can print this same listing on your printer by substi-
tuting TH for T,

Executing the Program

Before trying a trial run of the program, be sure you have
a copy of it. As we've warned you, a small bug in it can
destroy everything you have in memaony.

You can run it from ZBUG using the G (Go) command fol-
lowed by the program's start address. Type either of the
following:

17

EdASM-L

S/ DEBUGGING WITH ZBUG

G5TART (ENTER

GIFOe (ENTER
and the program will execute, filling part of vour screen
with graphics character number FQ. If it doesn’t do this,
the program probably has a "bug” which is what the rest
of this chapter is about,

The 8 BRK @ 3F0C or 8 BRK « DONE is ZBUG telling
you that the program stopped executing at the Swi
instruction located at 3F0OC. ZBUG interprets your clos-
ing SWI instruction as the eighth or final “breakpoint” (dis-
cussed below).

Setting Breakpoints

It your program doesn't work properly. you might find it
easier 1o debug it if you break it up into small units and
run each umit separately. From the command level, type
* followed by the address where you want execution to
break.

We'll set a breakpoint at location 3FQ05, the first location
containing the symbol SCREEN. To do this, type either of
the following:

“SCREEN [ENTER

X3FRS (ENTER
Mow type GSTART (ENTER! to execute the program. Each
time execulion breaks, type:

C (ENTER
to continue. A graphics character will appear on the
screen each time ZBUG executes the SCREEN loop.

(The characters appear to be in a diagonal line because
ZBUG scrolls to give you the breakpoint message.)

Ci@ (ENTER
and the tenth time ZBUG encounters that breakpoint, it
halts execution. Type:

¥ |_E_HTE'H|
This is the command to delete (Yank) a breakpoint. A
breakpoint number after the Y will delete the breakpoint

at that address. Used with no breakpoint number, ZBUG
will delete all breakpoints.

You may set up 1o eight different breakpoints numbered
O through 7. You may not set a breakpoint in a ROM
routine.

Examining Registers
and Flags

Type:
R (ENTER)
What you see are the contents of every register during

this stage of program execution. (See Section /I for a de*
inition of all the 6809 registers and flags.)

Look at register CC (the Condition Code). Notice the l=i-
ters to the right of it. These are the flags that are set
the CC register. The E. for example. means the E ilag
is set.
Type:

A
and ZBUG displays only the contents of the X registe:

You can change this in the same way you change the
contents of memory, Type:

@ (ENTER)
and the X register now contains a zero.

Stepping Through
the Program

Type:
3F O Note the comma!

LOX #$500 is the next instruction to be executed. The
first instruction. LDA #3FD. has just been executed
Type:

= [ENTER
and youll see this instruction has loaded register A with
F3. To see the next instruction (LDX #3%500) executed,
type:

, {Simply a comma)

You may continue single stepping through the program,
examining the registers at will, until you reach the end.
you do manage to get to SWI, the last instruction, ZBL
will pnnt:

CAN'T CONTINUE

which means it has reached the final step in the program
(SWI causes ZBUG 1o stop execution. If you omit S¥
from your program, ZBUG will cantinue executin
memaory.)

1R

EJTASME

Transferring a Block
of Memory

Type:
U 3FR@ @p@@ & (ENTER)

Now the first six bytes of your program have been copied
to memory locations beginning with 0000,

Saving Memory on Tape

To save a block of memory from ZBUG, type:

When the cassette is ready for recording, press [ENTER).
This saves your program, beginning at memary location

3F00 and ending at 3FOC, on tape, The last number is
where your program begins execution. In this case, this
number is the same as the start address.

To load TEST back into ZBUG, type:
L TEST (ENTER

Hints on Debugging

- Don't expect your first program to work the first
time. Have patience. Every programmer has bugs
i his new programs, and debugging is a fact of
life for ail programmers, not just beginners.

» Be sure to make a copy of what vou have in the
edit buffer befare executing the program. The edit
buffer is not protected from machine language
programes.

19

6/Using the ZBUG Calculator

ZBUG has a built-in calculator that will perform arithme-
tic, relational, and logical operations. Furthermare, it
allows you to interchangeably use three different num-
bering systems, ASCIl characters, and symbols

This Chapter contains many examples on how to use the
calculator. Some of these examples require that you have
the same sample program assembled in memory that we
used in Chapter 5.

Numbering System Modes

ZBUG recognizes numbers in three numbering systems;
hexadecimal (base 16), decimal (base 10), and octal
(base 8).

Output Mode

The output mode determines which numbering system
FBUG will use to print or output numbers on the screen,
From the ZBUG command level, type:

and examine memaory. The T at the end of each number
stands for base 10. Type:

0B (ENTER)
and you will see a Q) at the end of each number, The num-
bers are all base 8. Type:

G16 (ENTER
and you are now back in base 16, which is the default
output mode.

Input Mode

You can change input modes in the same way you
change output modes. For example, type:

110 (ENTER)

Now ZBUG will interpret whatever number you input as
a base 10 number, For example, if you are in this mode
and type;

T 43152 49162 (ENTER)
ZBUG will show you memory locations 49152 (base 10)
through 49162 (base 10). Note that what is printed on the

screen is determined by the output mode, not the input
mode.

You can use these special characters to "override” your
input mode:

BASE BEFORE NUMBER AFTER NUMBER
Base 10 | & T
Base 16 3 H
| Based {er a L

Table 1. Special Input Mode Characters

For example, while still in the 110 mode, type:
T 49152 sC@1Q (ENTER)
The “§" overrides the 110 mode. ZBUG, therefore, inter-

prets CO10 as a hexadecimal number. As another exam-
ple, get into the 16 mode and type:

T 431227 CA1@

Here, the "T" overrides the |16 mode. ZBUG interprets
49152 as decimal.

Operations
ZBUG will perform many different types of operations for
you. For example, type:
COR@+25T/

and ZBUG goes to memory location C019 (base 18), the
sum of C000 (base 18) and 25 (base ten). If you simply
want ZBUG to print the results of this calculation, type:

CO@A+25T=
On the following pages, we'll use the terms "operands.

‘operators, and "operation.” An operation is any calcula-
tion you want ZBUG to solve. |n this operation:

1+2=
“1"and "2" are the operands. "+ " is the operator,

Operands

You may use any of these as operands:
1. ASCIl characters

2. Symbols

3. Numbers (in either base 8, 10, or 168) — Please note
that ZBUG will recognize integers (whole numbers)
only

21

ELiASM-E

&/ USING THE ZBEBUG CALCULATOR

Examples:
.

prints 41, the ASCI code far A
START=

prints the START address of the sample program. Ut will
print UNDEFINED SYMBOL if you don't have the sample

program assembled in memory.)
150=
prints the hexadecimal equivalent of octal 15.
If vou would like your results printed in a different num-
bering system, use a different output mode. For example,

get into the 010 mode and try all the above examples
again.

Operators

You may use arithmetic, relational, or logical operators.
(Get into the 016 mode for the following examples.)

Arithmetic Operators

Addition -
Subtraction -
Multiplication *
Division DIN;
Modulus .M0D.
Positive +
Negative 4
Examples:

DOME-START =
prints the length of the sample program (not including the
SWI at the end).

.01V, 2=
prints 4. (ZBUG can perform only integer division.)

B, MO0, 2=
prints 1, the remainder of 9 divided by 2.

1-2=

prints OFFFF, 85535T, or 177777Q, depending on which
output mode you are in, ZBUG will never calculate a neg-
ative number as a result. Instead, it uses a "number cir-
cle” which operates on modulus 10000 (hexadecimall;

FFFF s 1

FFFD

I MINUS 1

equals 3
FFFF 1

Figure 5. Number Circle lllustration of Memory

To understand this number circle, you can use the clock
as an analogy. A clock operates on modulus 12 in the
same way the ZBUG operates on modulus 10000, There-
fore, on a clock. 1:00 minus 2 equals 11:00:

11:00 @ 100

9.0 300

I minus 1

equals 7]
11:00 1.0@

Figure 6. Number Circle lllustration of Clock

Relational Operators

Equals
Mot Eqgual

yEQU .
HMED .

These operators determine whether a relationship is true
or false.
Examples:

a.EQU. 3=

prints OFFFF, since the relationship is true. (ZBUG will
print 65535T in the 010 mode or 177777Q in the O8
mode.)

5.NEG.5=
prints O, since the relationship is false.

Logical Operators

Shift £
Logical AND AND .
Inclusive OR vOR
Exclusive XOR CHOR,
Complement MOT,

Logical operators perform bit manipulation on binary
numbers. To understand bit manipulations, see the 6809
assembly language book we referenced in the
introduction.

Examples:

1@<2=
shifts 10 two bits to the left to equal 40. This is the same
operation the 6808 ASL instruction performs.

18<=-2=
shifts 10 two bits to the right to equal 4. The ASR instruc-
tion also performs this operation.

B HOR. 5=

prints 3, the Exclusive Or of 6 and 5. The 6803 EOR
instruction performs this operation.

22

Complex Operations

ZBUG will calculate complex operations in this order:

*+ DIV. MaD.
vAND .
|GE1 rxﬂﬁl

+

+EQU. NEQ.

You may use parentheses to change this order.

Examples:
A+4,DI0, 2=

The division is performed first.
{d+a) DIV, 25

The addition is performed first,
d+4.DIV. 4=

The multiplication is performed first,

23

7/Running the Program From BASIC

The finished product of your labors is an assembled.
debugged machine-code program. You can run this pro-
gram directly from BASIC as either a stand-alone pro-
gram or as a subroutine to your BASIC pragram.

The steps are;

From the Editor-Assembler:

1. Revise the program so that it will run as a routine and
return to BASIC

2. Assemble the program on tape

From BASIC:
3. Load the assembled program with CLOADM
4, Execute the program

= as a stand-alone program using EXEC, ar

- a5 a subroutine to your BASIC program using CLEAR
and USR

1. Revising the Program

Before you can use the program from BASIC, you need
te make a minor change to it. Change it to a routine
which, after executing. will return to BASIC.

In our sample program, the next to the last instruction is:
SWI
Load the program into the Editor and change that instruc-
tion to:
RTS
Now the program is actually a routine which YOU Can run
fram BASIC. Uf you want to execute it again from ZBUG.

youll have to change RTS back to SWI or set a break-
point before SWI and never execute it.)

So that your program is the same as ours, be sure that it
has an ORG 33FC0 instruction at the beginning of the
program. This is the revised sample program,

ORG AF0D
START LCA *EQFO

LO® #5500
a3CREEN STA rit

CHPX ®353FF

ENE
RTS
END

SCREEN
DONE

2. Assembling the Program

Once the program is revised, assemble it to tape with this
command:

A SAMPLE |ENTER
You are now finished with the Editor-Assembler o you

may start-up the Computer without the EDTASM + ROM
cariridge or enter BASIC with the Q command.

3. Loading the Program

To load the program, prepare your recorder and type:
CLOADM (ENTER

Since we inserted an ORG $3F00 instruction in the sam-

ple program, you did not need to specify where in mem-

ory the program should be loaded. The program will be

loaded at memory locations beginning with 3F00 (dec-
imal 16128).

If your program does not have an ORG instruction, your
CLOADM command will need to specify a loading
address. CLOADMAI G000 [ENTER), for example, would
load the program info memary locations beginning with
16000,

4. Executing the Program

You can either execute the program as a stand-alone pro-
gram or as a subroutine.
As a Stand-Alone Program
Type:
EXEC 15128 (ENTER)

The program will execute and return you to BASIC's OK
prompt.

25

7 / RUNNING THE PROGRAM FROM

As a BASIC Subroutine

This is the most popular way to use machine language
routines. When you need to do a task which is 100 slow
or impossible in BASIC, you can call a machine-code
subroutine. When the task is compileted, it will return con-
trol to your BASIC program.,

Type and RUN this BASIC program:

18 CLEAR 20@. LELZE

28 DEF USR@=1G6128

38 CL5

4@ INPUT "PRESS <ENTER> WHEN READY": AS
5@ A=USR{B)

G@ INPUT “WANT TO DO IT AGAIN"3 A%

70 IF A%="YES" THEN 20

GUN ENTER
Normally BASIC can use any memory locations from
decimal 1536 to the top of RAM. This means it could pos-
sibly overwrite your machine-code program. Line 10
CLEARs an area of memory from 16128 (which is hex-
adecimal 3F00) to the top of RAM, thereby restricting
BASIC from using this area,

Line 20 defines the originating address of the machine-
code program (USR] to be 16128, Line 50 calls the
subroutine.

Passing Parameters

If you want to send some data to your machine-code pro-
gram (we call this "passing & parameter’), you can sub-
stitute the “parameter” for the 0. For example:

AzUSRELS)

BASIC

will call the machine-code program and pass the parar
eter of 5 to it. To get this parameter, your machine-cod
program will need to have these two instructions:

INTCNY EQU SB3ED
JSR CINTENV]

which calls a routing called INTCNV. (INTCNV is locate
in your BASIC ROM. along with other routines you ¢z
use. All the BASIC ROM routines are listed in Appena
E.) INTCNV will get 5. the parameter in your USR stat:
ment, and load it into the D register.

Your machine-code program can, in turn, return a parar
eter to your BASIC program by loading it in the D regist:
and then executing these instructions:
GIMABF EQU t84FQ
JSR [GIVABF]

GIVABF will set the variable in yvour USR statement. |
this case A, equal 1o the contents of the D register.

For maore information on passing parameters, see i
6809 assembly language book we referenced in tn
introduction.

Note: to generate the [character, type BHIFT (|,
To generate the 1 type (SHIFTI L # L

Hints and Tips

« To save memory, use this formula to calculate the
originating address of your program: top of RAM
minus the jength of the program (in bytes).

26

8/6809 Assembly Language

This is a brief reference section on programming the
G809 microprocessar. It will not teach you assembly lan-
uage programming.

Mewcomers to assembly language programming will
want to read:

Radio Shack Catalog No. 62-2077
by William Barden Jr.

Others, who want more information on the 6809 for tech-
nical applications, will want to read:

MCEE09-MCE509E

8 Bit Microprocessor Frogramming Manual

Motorola, Inc.

The 6809 Microprocessor

The BB0Y9 Microprocessar is produced by Motorola, Inc.
It is an enhanced version of the MCGB00 Microproces-
sor, Programs written on the 6800 are upwards compat-
inle with the 6809,

Registers

The BB02 Processor cantains nine temporary storage
areas which you may Use in your program;

| REGISTER sz | DESCRIPTION
A 1 byte Accumulator
B 1 byte Accumulator
D 2 bytes Accumulator
(a combination
of A and Bl
' oP 1 byte Direct Page
CC 1 byte | Condition Code
PG 2 bytes Program Counter
* 2 bytes Ircdex
Y 2 hytes fndex
U 2 bytes slack Pointer
= | 2bytes Stack Pointer

Table 2. 6809 Registers

The A and B registers are for manipulating data and
doing arithmetic caiculations. They can each hold one
byte of data. f vou like. you can address them as D, a
single two byte register.

The DP register is for direct addressing. It will store the
most significant byte of an address. This allows the Pro-
cessor to directly access an address with the single,
least significant byte.

The X and Y registers can each haold two bytes of data,
You will use these registers primarily with indexed
addressing.

The PC register stores the address of the next instruc-
tion to be executed.

The Uand § registers can each hold a two byte address
which points to an entire "stack” of memary, This address
Is one pius the top of the stack. For example, if the U reg-
ister contains 0155, the stack begins with address 154
and continues downwards,

The processor automatically uses the S register to point
to a stack of memory during subroutine calls and inter-
rupts. The U register is solely for vour own use, You can
access either of these stacks with the PSH and PUL
instructions or with indexed addressing.

The CC register is for testing conditions and setting
interrupts. It is divided into eight "flags.” Many 6809
operations will “set” or “clear” one or more of these flags.
Qther operations will test to see whether a certain flag is
set or clear. This is the meaning of each flag, if set:

C {(Carry), bit O an 8-bit arithmetic operation caused
a carry or borrow from bit 7.

V (Overflow). bit 1 an arithmetic operation caused
a signed overflow.

Z (Zero), bit 2 the result of the previous operation is
il =il

N (Negative), bit 3 — the result of the previous oper-
ation is a negative number.

I (interrupt Request Mask), bit 4
interrupts will be disabled.

H (Half Carry), bit 5
caused a carry from hit 3.

F (Fast Interrupt Request Mask), bit 6
requests for fast interrupts will be disabled.

any requests for
an S-bit addition aperation

any

29

8 /6809 ASSEMBLY LANGUAGE

E (Entire Flag), bit 7 all the registers were stacked
during the last interrupt stacking operation. {f clear,
only the PC and CC registers were stacked).

The Assembly Language
Program

You may use four fields in an assembly language instruc-
tion: symbol, command. operand, comment. In this
instruction:
START

LCA #EF GETE CHAR

START is the symbal. LDA is the command. #3F3 is the
operand (we will discusgs the meaning of the # and §
signs later), GETS CHAR is the comment,

The comment is purely for yvour convenience. It is ignored
by the Assembler.

The Symbol

You can use symbols to define memory addresses or
data. The above instruction uses START to define its
memory address. Once defined, you can use START as
an operand in other instructions. For example:

BNE START
branches to the memory address defined by START.

The Assembler stores all the symbols. along with the
addresses or data they define, in a "symbol table!” rather
than as part of the "executable program.”

The Command

The command may be either: a "pseudo-operation. or a
B809 instruction.

Pseudo-operations control various functions of the
Assembler itself, such as defining labels, telling the
Assembler where to store the executable program, or
storing data in memory. They are not translated into 6809
machine-code and are not stored with the executable
program. For example:

NAME EQU %43
defines the symbol NAME as 43, This information is
stored in the symbol table.

G 3000
tells the Assembler to begin the executable program at
address 3000,
SYMBOL FCBE £

stores 6 in the current memory address and labels this
address SYMBOL SYMBOL and its corresponding
address are stored in the symbaol table,

B8049 instructions tell the Microprocessor to carry out an
operation. They are translated into 6809 machine-code
as “op codes” and stored with the executable program.
Far example:

CLRA

tells the Processor to clear the A register. The Assembler
translates this into op-code number 4F and stores it with
the executable program.

All the pseauda-operations and 68089 instructions are
listed at the end of this section.

The Operand

The operand allows you to specify a memory address or
data: For example:

LDD =4 3000
lnads reqister D with 3000. The operand, #53000, spec-
ifies a data constant,

The $ sign indicates that 3000 is a hexadecimal, rather
than decimal number. You must specity hexadecimal and
octal numbers with:

BASE | BEFORE NUMBER | AFTER NUMBER
HEXADECIMAL 5 | .
| OCTAL I i | o

Table 3. Hexadecimal and Octal Operands

For example, the Assembler interprets 17 as decimal 17;
17 as hexadecimal 17; and 170Q as octal 17.

The Assembler treats the operand as part of the 68089
instruction. It stores the operand with the executable
program.

Addressing Modes

In the above example, we used the # sign to tell the
Assembler and the Processor to interpret 3000 as data.
We can specify a different mode of interpretation by
omitting the # sign:

LOD 3000

which interprets 3000 as an address. The Processor will
then load D with the data contained in address 2000 and
30071

Each of the 6809 operations allow you fo use one to six
addressing modes. These addressing modes tell you
whether an operand is required to carry out the operation
and which mode the Assembler and the Processor will
use in interpreting the operand,

30

EUiLASV

1. Inherent Addressing

There is no operand, since the instruction doesn't require
one. For example:

SHI
interrupts software. (No operand required.)

CLRA
clears register A. Again, no operand is required. The A
register is part of the instruction.
2. Immediate Addressing

The operand is data. You must use the # sign to speacify
this mode. For example:

ADDA #5330
adds the value 30 to the contents of the A register.
DATH EQL 8004

LD =#=0ATA

loads the value 8004 into the X register
CHPX a#$1734d
compares the contents of register X with the value 1234

3. Extended Addressing

The operand 1s an address. This is the default mode of all
operands. (Exception: if the first byte of the operand is
identical to the direct page, which is 00 on start-up. it will
be directly addressed. This is an automatic function of
the Assembler and the Processor, You do not need to be
concerned witn it if you're a beginner.) For example:

JSR 51234
jumps to address 1234,
SPOT EQU $1234
S5TA SPOT

stores the contents of register A in address 1234,

If the instruction calls for data, the operand contains the
address where the datais stored,

LOA $1234
does not load register A with 1234, The Processor will
load A with whatever data is in address 1234. If 06 is
stored in address 1234, register A is loaded with 08.

AO0A %1274

adds whatever data is stored in address 1234 to the con-
tents of register A,

LGD $1234

loads D, a two-byte register, with the data stored in mem-
ory locations 1234 and 1235,

You can use the > sign, which is the sign for extended
addressing, to force this mode. (See "Direct Addressing”,

Extended Indirect

The operand is an address of an address. This is a vari-
ation of the extended addressing mode. The 1 1 signs

= to produce the 1sign.]

In understanding this mode, think of a treasure hunt
game. The first instruction. "Look in the clock” The clock
contains the second instruction, "Look in the refrigerator.”

Examples:

JSR [e1Z234]
Jumps to the address that i= contained in addresses
1234 and 1235, It 1234 contains 06 and 1235 contains

1, the effective address is 0611, The program will jump

o 08511,
SPOT EQU $1234
STA [SPOTI
stores the contents of register A in the address contained
in addresses 1234 and 1235,

LDE CR1722d]
loads D with the data stored in the address stored in
addresses 1234 and 1235,

This is a good mode of addressing to use when calling
ROM routines. For example, the entry address of the
POLCAT routine is contained in address AQQQ. There-
fore, you can call it with these instructions:

POLCAT EQU $A2E0
JSR LFOLCAT]

If a new version of ROM puts the entry point in a different
address, your program will work without any changes.

4. Indexed Addressing

The operand is an /index register which points to an
address. The index register may be any of the two byte
registers, including PC. It may be augmented by:

- a constant or register offset
= an autoincrement or autodecrement of 1 ar 2

The comma (,) indicates indexed addressing.

As an example, we'll first load X. a two byte register, with

1234:
Loy #5173

We can now access address 1234 through indexed
addressing. This instruction:

STA iR
stores the contents of A in address 1234.
5TA o,

31

B/ 6808 ASSEMBLY LANGUAGE

—

stores the contents of A in address 1237, which is 1234
-~ 3. (3 is a constant offset.)

SYMEOL EQU %4

5TA SYMBOL o4
stores the contents of A in address 1238, which is 1234
+ SYMBOL. (SYMBOL is a constant offset.)

LD8 ®g3

STA By X
stores the contents of A in address 1239 which is 1234
+ the contents of B. (B is a register offset. You may use
gither of the accumulator registers as a register offset.)

SThA ri

This instruction does two tasks: (1) stores A's contents in

address 1234 (the contents of X) and then (2] increments
X’s contents by one, so that X will contain 1235.

=2TH
(1) stores A's contents in address 1235 {the current con-
tents of XJ and then (2) increments X's contents by two to
equal 1237.

S5Tw

(1) decrements the current contents of X by two to equal
1235 (1237 2) and then (2) stores A's contents in
address 1235,

As we said above, you can use PC as an index register.
In this form of addressing. called program counter rela-
tive, the offset is interpreted differently. For example:

SYHMBOL FCE 2
LDA SYMBOL +PCR
When this program is assembled, the Assembler SUB-
TRACTS the contents of the PC register from the offset:
. LDA SYMBOL-PCR +PCR
When it 1s executed, the Processor ADDS the contents

of the PC register to the offset. This causes A to be
loaded with SYMBOL.

This appears to be the same as extended addressing.
However, by using program counter relative addressing,
the resulting machine-code program is completely
refocatable.

Indexed Indirect Addressing

The operand is an index register which points to an
address ol an address. This is a variation of indexed
addressing. For example, assuming that:

- the X register contains 1234
- address 1234 contains 11
« address 1235 contains 23

b
F iy ++

! =i

= address 1123 contains 84
this instruction:
LOA Ly
loads A with 64, (The X register points to the addresses

of the address. This address is storing 64. the required
data.)

STa CiRl

stores the contents of A in address 1123. (The X register
paints to the addresses, 1234 and 1235, of the effective
address, 1123.).

5. Relative Addressing

The Processor interprets the operand as a relative
address. There |5 no sign to indicate this mode, The Pro-
cessor automatically uses it for all branching instructions,

For example, if this instruction is located at address
0580:

BRA t@5ES

The Processor will convert $0600 to a relative branch of
+ 5 (0600 - D580),

As we said above. the Processor automatically uses this
mode on all branching instructions. It is invisible to you
unless you get a BYTE OVERFLOW error, which welll
discuss below. Because the Processor uses this mode,
you can relocate your program in memory without chang-
ing any of the branching instructions.

The BYTE OVERFLOW error means that the relative
branch is outside the range of - 128 to + 127. You will
have to use a long branching instruction instead. For
example:

LBRA $PERD
allows a relative branching range of
+ 327867,
6. Direct Addressing

In this mode, the operand is haif of an address. The other
half of the address is the contents of the DP register:

32768 to

DP REGISTER OPERAND
ADDRESS = | {most significant | (least significant
bytel bytel

Figure 7. Direct Addressing

The Assembler and the Processor use this mode auto-
matically whenever they approach an operand whose
first byte is what they assume to be e “direct page” (the
contents of the DP register). Until you change the direct
page, they both assume it is 00.

32

For example, both of these instructions:

JGR $0@15
JoR £135

cause a jump to address 0015. In both cases, the Assem-
bler uses only 15 as the operand, not 00, When the Pro-
cessor executes them, it will get the 00 portion from the
DP register and combine it with 15. (On start-up, DF con-
tains 0, as do all the other registers.)

Because of direct addressing, all operands beginning
with 00, the direct page, consume less room in memory
and run quicker. If most of your operands begin with 12,
you might want to make 1.2 the direct page.

To dao this you first need to tell the Assembler what you
are doing by putting a SETDF pseudo-operation in your
prugram:

SETOP
This tells the Assembler to drop the 12 from all operands

beginning with 12. That is, the Assembler will assemble
the operand “1234" as simply "34.

£12

Then you must load the DP register with 12. Since you

can use LD only with the accumulator registers, you will
have to load DP in a round-about manner:;

LDB rE17
TFR B.DF

Now the direct page is 12, rather than 00. The Processor
will execute all operands beginning with 12 (rather than
00) in an efficient, direct manner.

The Assembler uses direct addressing on all operands
whose first byte is the same as the direct page. You can
be sure that the Assembler uses it or help document your
program by using the < sign, which is the sign for direct
addressing. For example, if the direct page is 12

JER “H135

jumps to address 1215. This instruction documents that
the Processor will use direct addressing.
Likewise, you might want to use the = sign to force
extended addressing. For exampie:

J5HR 1215
jumps to address 1215. The Assembler and Processor
use both bytes of the operand.

33

EUIASV

9/Assembler Pseudo Operations

This iz a listing of all the pseudo operations and the syn-
taxes you should use in typing them. Addressing modes
do not apply to pseudo operatians.

Definition of Terms

symbol

any string one to six characters long, typed in the symbol
field.

expression

any expression tyoed in the oparand field. See Appendix
w, ZBUG commands. for a definition of valid
ExXpressions.

Pseudo Operations
END

END expression

Tells the Assembler to quit assembling the program. You
can use the optional expression to specify the start
address of the program. For example:

EMD £3F0D

tells the Assembler to quit assembling the program and
to store its start address, 3F00, on tape. When vou
CLOADM the program, you will not need to specify the
start address.

EQU
symbo! EQU expression

Equates a svmbol to an expression. For example:

LGP EQU $3FOR

causes LOOP 1 to equal $3F00. You may use LOOP1 as
data or an address

EQU is helpful for setting the values of constants. You
may use it anywhere in your program.

FCB

symbol FCB expression

Stores an expression into memory at the current
address. The symbolis optional. The expression may be

one byte long. For example:

DATA FCB $33

stores 33 1n address DATA.

DATAZ FCE $33+COUNT
stores 33 + COUNT in address DATAZ.
FCC

symbol FCC delimiter string delimiter

Slores an ASCII string into memory beginning with the
current address. The symbolis optional. The delimiter

may be any character. For example:
THELE FEEC STHIS 15 A STRINGY

writes the ASCII codes for THIS IS A STRING in memary
locations beginning with TABLE.

FDB
symbol FDB expression

Stores an expression into memory beginning at the cur-
rent address. The symbolis optional. The expression can
be two bytes long. For example;

DATA FOBE L U O
stores 3322 in address DATA and DATA + 1,
ORG

ORG expression

tells the Assembler o originate the program beginning
with expression. For example:

ORG $3IFRR
causes the assembler to beqgin assembling the program
al address S3F00.

You may put more than one ORG command in a program.
When the Assembler arrives at the new ORG command.
it will beqin locating program code at the new
EXOression.

RMB

RMB expression

Heserves expression bytes of memary for data. For
example;

DATA RMB $@6
reserves B bytes for data beginning at address DATA.

35

9/ ASSEMBLE

R PSEUDO OPERATIONS

SET
symbol SET expression

Sets symbol to be equal to expression. You may use SET
lo reset the symbol elsewhere in the program. For
example:

STMBOL SET $3500

sets SYMBOL equal to 3500. Later in the program, vou
may reset SYMBOL;

SYMBOL SET %4380

now SYMBOL equals 4300.

SETDP

SETDP expression

Tells the Assembler that the direct page will be EXpres-
sion. Example;

SETDP 20

tells the Assembler to set the direct page to $20. You

must aiso load the DP register with $20. See “Direct
Addressing” for more information.

36

10/6809 Instruction Set

Definition of Terms

Source Forms:

This shows all the possible vanations you can use with
the instruction. Table 4 gives the meaning of all the nota-
tions we use. The notations in italics represent values
you can supply.

For example, the BEQ instruction has two source forms.
BEQ dd allows you to use these instructions:

BED @B BEQ sFF BEQ %AQ

Whereas LBEQ DDDD allows you these:
LEEQ '+CAA0G LEEQ %FFFF

Operation:

This uses shorthand notation to show exactly what the
instruction does, step by step. The meaning of all the
codes are also in Table 4.

For example, the BEQ operation does this:

It (but only if), the zero flag is set. branch to
the location indicated by the program counter
pfus the value of the 8-bit offset”

Condition Codes:

This shows which of the flags in the CC register are
affected by the instruction, if any. As vou'll note, BEQ
does not set or clear any of the flags.

Description:
This is an overall description, in English, of what the
instruction does.

Addressing Mode:

This tells you which addressing modes you may use with
the instruction. BEQ allows only the Relative addressing
mode,

37

10 / 6809 INSTRUCTION SET

ABBREVIATION MEANING
| ACCA ar A Accurmulator A

ACCBorB Accumulator B.

ACCAACCB orD Accumulator D

ACCX Either accumulator A or
accumulator B.

CCRorCC Condition code register.

DPR or DP Direct page register

EA Effective address.

IFF it and oniy if.

X or X Index register X.

YorY Index register Y,

LSN Least significant nibble.

hA Memaory location,

M Mermary immediate.

WS Most significant nibble,

PC Program counter.

H A reqister before the aperation.

R A reqister after the operation.

TEMP A temporary storage location.

wxH Maost sigrificant byte of any
location.

axb Least significant byte of any
location

Spors | Hardware stack pointer.

ABBREVIATION M_I_E.ENINE

Us or L User stack pointer.

P A memory location with immediate,
direct, extended, and indexed
addressing modes.

[] A read-write-modify argument with
girect, extended and indexed
addressing modes.

() The data pointed {o by the enclosed
(16 bit address),

dd 8-hbit branch offset,

poob 16-bit offset.

Immediate value follows.

! Hexadecimal value follows.

[] Indirection,

; Indicates indexed addressing.

: |5 transferred to.

Boolean AND.

) Boolean OR.

8 Boolean Exclusive OR (XOR).

Table 4. Notations and Codes

Boolean NOT.
Concatination,
Arithmetic plus.
Arithmetic minus.
Arithmetic multiply.

Add Accumulator B
into Index Register X

Source Form: AENX
Operation: B 13X « ACCH

Conditlon Codes: N affectad.

Description: Add the B-bd umsigned value in accurmulator B

info ingdex, regester X
Addressing Mode: inherent.

Add with Carry into Register

Soureé Forma: ADCA & ADCE B2

Oparation: '~ F + M i C

Condition Codes:
H - Seifa hatl-carty 3 generzted; clesred otherwise
M — Sed i the resull s nenalve: clesred othenwss
2 Tai i the resull = 2erg cleared oifwrwise

Vo Betif an overflow is genarated; cleared otherwise
C - Betifacarry @ generated, cleared ciherwise
Description: Adds the contents of the C [carry) bt and the
meEmory e mto an 8-t socumaihor
Addressing Modes: immoediate; Extended: Direct: Imdoxes

Add Memory into Register

Source Forma: ADDA &, ADDS F

Chparation: B - R« M

Condition Codea:
H —Seif & Rall-cary is goreraled: cleined olbarwle
MGt the reeal b et reiciatnee: Clegneed othenasiis
£ S0l if the resutl i 2o cleared othorwize.

W Sat i an ovarfiow 18 generaten, ceared otheraise.
C . Set if a carry is generatod; clearsd ctherwise,
Description: Adds the memory Dyle into an S-oif
= w1
Addressing Modes: Immedate; Extended, Direct Indexed,

Add Memory into Register

Source Form: ADDD P

Dparation: B H o+ M1

Condition Codes:
H — Mot allectiec
N Sel il th oosull s megalnen clagered olheowiss
i Sat il the rosult s e cleared otheraase

Voo Beliban overflaw is genaratiadt clearad otherwss.
S Bal i acarny s genermied sleared piberwise
Description: Adds the 16-Dit memaory valus into e 16-bi
accurmdnior.
Addressing Modes: mmediate; Extended: Direct: Indeod

Logical AND Memory
into Register
Source Forms: ANDA & ANDE £
Operation: R'- B\ M
Condition Codes:
H — Mat aliscted
Mo et e resull s neganive: clearsd oiferwise

L — 5ot if the resull is 2ere: Seared athenyise.
Vo Always cleansd
C. - Notaffecied
Descriplion: Peromms the: fogical AND ooeration betweon

the coniinits of an accumnuiator and the contents of memony

lecabar B iind the resull is stored 0 the acoemulaton
Addressing Modes! Immediate; Extended, Diect, Indexed,

Logical AND Immediate Memory
into Condition Code Register

Source Form: ANDUC #xx
Operation: R™- R A M
Condition Codes: Afleciad according o the ooerahion

Description: Ferforms a iagical AND batwesan the corditon

code regster ond the immediate byvie specified in the
instruction and places he resull in e condificn code
Tegisler

Addressing Mode: Immadizie

Arithmetic Shift Left
Saurce Forma: ."l.h_L L .P-.'SL.r".__ .P-.EEEI
Operation: ﬁr[] [] 1T J |—_D
=T . hb
Condition Codies:
H Undebned

B Setil e result is negative; claared othenwise,
£ — Getiftha result is s, cleared athereise,

V - Loaded wih the result of the oxclusve DR of Gits
Fd Fn0 Seven of the angmol operand
C -~ Looded with bit seven of the anginal operand
Descriplion: Shitts all bds of the operand one plce to the
Ieft. Bit rorp i oaded with a zem, Bi seven s shifted into
the C (zarry) bit.
Addresaing Modes: inherent Extended: Diract; Irdewod

ABX

(ib-B1it}

AND

AND

ASL

39

10 / 6808 INSTRUCTION SET

ALk

BHI

Arithmetic Shift Right

Source Forms: ASR O ASRA: ASHS
B |

Operation: [-‘lll | | | ‘] |_|E

b hil
Conditlon Codes:
H Unoefined,

M Setif the resull s negative; clearsd otherwize

LSt it the resull is zaro; clesred otherws,

W Mot affecied

S Loaded with Dif zero af the original aperanc
Description: Shifts all Bt ol tha aperand one glace 1o the
right. Bit saven is held constant. Bif zero is-shifted inta the
iC {earmy) [ir,
Addressing Modes: Ifherent Extendad: Direc® Ipdexad.

Branch on Carry Clear

Source Forme: BOC oo, LECC DDDD
Crperatiom:

TEMP: MI

IFF =1 then PZ - PC oy TEMP

Condition Codes: Mat affecied.

Description: Tests the state ol tha Cloamy) bitand causes 4
brarch if i is clear,

Addressing Mode: Setative.

Comments: Equivalent 19 BHS dd; LBHS DLROD

Branch on Carry Set

Source Forms: BOS 47 LBCS 0008
Diperation:

TEMP--MI

IFF C= 1 then PGP+ TEMP

Condition Codes: Moi atfectan

Description; Tests the state af the Gicarry) bit ard causes 5
bramch if it is sat,

Addressing Mode: Ralatve

Comments: Equnalent o BLO od: LBLC D000

Branch on Equal

Sowrce Forms: BEC do: LBEC OO0
Operation:

TERF- kil

HFF Z= 1 then PL'- PCo TEMP
Conditicn Codes: Mol alleckd

Dascription: Tests the sfate of the 2 (zercd bit and causes a
bramch if 4 is et When used after a subiract ar compans
operation, this instruction will Branch if the compared valies,
signesd ar unsigned, were exacty e same

Addressing Mode: Felative

Branch on Greater than
or Equal to Zero

Source Forms: BGE o9 LBGE D000
Cperation;

TEMP- M

IFF I & W1 Dthan PO PC = TEMP
Candition Codes: Mot atectad.

Description: Couses & branch if the N (negatve) bitand the
W lpverflow! bit are eithier both set or noth clear. That is,
branch if the sigr ol & valid beos complenent resultis, ar
would Be, positive. When used after & sublract or compeane
COEratian on Iwos compement valies, the nstroction will
Branch it the regestar was greater than o agual to the
MBMCTyY O,

Addressing Mode: Helative

Branch on Greater

Bource Forms: BGT o LRBGT 000
Operation:

TERF+ A

IFF £ % IW == 0 then PG P TEMP
Condition Codes: Mot affected.
Description: Causes a branch if tha N inegative) it and
W Lol bt are gither bath set or both olesr and tho

Zlzercd bit 1s clear. In otber wards, Branch f t1he sign ot a
vibad P cormplesmant resull is, o would be, positive and
b rern When used after 3 suhiract or compane operation
an ks cormalesmard valeas, his astruction will branck i the
regester was greater than the memory aperand

Addressing Mode: Helativa

Branch if Higher

Sowurce Forms: BHi & LBH| D000
Operation:
TEMP--MI
IFFIC w 21 =0then PG PC 4+ TEMP
Condition Codes: Mot affected
Descriptlon: Causes o branch if the pravicus aperation
caused nesther a carry nor & 2erg result, When uzed alier a

sublract or compare cperation on unssgmed nirary values,
this matrectan well branch o thes mﬂi::,“-:-r W }-.;__i;-"_:r than the
meEmory Doerand.

Addressing Mode: Helative

Comments: Gonerally, not useful aftor INC/'DEC, LOTST
and TSTCLR/GOM instruciions

40

Branch if Higher or Same

Source Forms: BHS oo, LBHS DODD
Cperation:
TEMP--MI
IFF G = then PC PG + W
Condition Codes; Nat affected.
Deacription: Teats the state of the C lcamyd b and causes a
branch f it is cear. When used after a subfract gr compars

o unsigned hbirary valuoes, His indtruction will brancs if ko
reqisfer was higher thar or the same as the rmamory
CEErant.

Addressing Mode: Relative

Caomments: This is a duplicate assembiy-languags
mnemanic for the single machine nstruction BOC, Ganeralbhy
not usaful after INCYDEC, LO9ST, and TSTOCLECOM

inafruckions,

Bit Test

Source Form: BIT P

Ciperation; TEMP--R 4 M

Condition Codes:
H rat alflested
B Sl the resul s negative; cearerd othenwiao
Fl Setil the rasult s pero: cleared othengsa

Vo AbwaEys Clearsd

G — Mot affecied.
Description: Performa the ngical AND of the contents ol
accumulator & or B and the cortants of memony 1ocation M
anc medifies the condifion codeas accordirghy, Tha conterls
of accumslator A or B and memory location M are not
affected.
Addressing Modes: iImmediate; Extended; Direct; Indaxed.

Branch on Less than

or Equal to Zero

Source Forms: BELE o LBELE O0O00D
Operation:

TEMF-- At

IFE 2wl W= 1 ihen PC- PCH TEMP
Condition Codes: Mot affecied.

Description: Causes a branch i the axclusive OF of the M
irwcgatival and W ioverfiow) Bits s 1 or ifthe Z (2erod bit i
wot. That is, branch i the sign of a valsd twos complemarnt
resutl is, ar would e, regatied When wsed aller a sobbras]
ar cormdane operaban on twos complesnent values. ths
instruction will branch it the ragister was legs than or agual
16 theés rméaminry oparard.

Addressing Mode: Halafive.

Branch on Lower

Source Forma: BLO g, LBLD DDOO
Operation:
TEMBP-- kil
IFFL =1 then PC--PC+ TEMP
Conditlon Codes: MNpt affecied.
Description: Tests the state of the & (oamyd bit and causes a

branch i it % =2t When used after 3 subtract Or compsre on
ursered Benary values. this instructan will branch if fhe
register wos lower than the mamoey oparand

Addressing Mode: Bolative

Comments: This is a duplicate assembly-languagea
minermonic o thie single maching instnacticn BCS, Generslly
not useiul after INCADEC, LOSST, and TST/OLR/COM
INSENeSHonS

Branch on Lower or Same

Source Formas: BLS o, LBLS GOOD
Operation;
TEMP+- b1
IFF {5 wdl =1 then PC'- PC | TEMP
Condition Codes: Mot affected.
Description: Causes & branch if he previous aperation

caused aittser a carey or a Zerc result, When wsed afler a
subtract ar compsare aparatian an urnsigned Bendry values
this inatraction will Branch if the requstor was oweer than o
the same: a5 the memary oparand

Addresaing Moda: Helastna,

Comments: Generally nol usaful atter INC/DEC, LDVST. ard
TSTCLRAGOM instructions.

Branch on Less than Zero

Source Forms: BLT oo LBLT DDOD
Crperation:
TEMP- M
IFF M & W1 =1 then PO+ PC + TEMP
Condition Codes: Mot aflected
Dascription; Causes a branch it eidbear, bul nat both, of tha

M ineqativel o loverfiow) Dits s set That is, branch d tha
sign af & vald twos complament result 15, o would be,
negative. When used after a subtract or compare coeration
o bws complement binary values, his instruochcr will
Eeanch 1 the regster was oss har e mersary apaerand.
Addressing Mode: Rolalme

Branch on Minus

Source Forma: BMI ad; LEME G000
Operation;
TEMF+ M1
IFF M = 1 then PC PO + TEMP
Condifion Codes: Nat affected
Description: Trests the state of the N (negatived bit and

causss a bramch if sat. That s, branch if the signoof the beos
complement reault s negative

Addresaing Mode: Felative

Comments: When used after an coeration oo signed Dinary
values, this insfruction sl branch f the resall is minias: I s

generally preferced 1o-use the LELT nstruction atter signed

opErations

ELASNM

BIT

BLE

BLO

BL

LI}

BLT

BRI

41

10 / 6809 INSTRUCTION SET

BNE

BPL

BRA

BRN

Bok

CHMF
{g-Bit)

Branch Not Equal

Source Forms: BNE o LANE 000
Crperation:

TERP+ A

IFF Z =0 thar PC PG+ TEMP
Condition Codes: Mot affacied.

Description: Tosts the stafe of tha Z (zerol bit and causes g
oranch 4l s Slear. VWhen used zfer a subtract or comgane
operaticn an any beary vabues, this instructan will branch

if e reqistes o, of would be nat equal o the memony
caeranc

Addressing Mode: Relativa

Branch on Plus

Source Forms: HPL od; LBFL D000
Operation:
TEMP--MI
IFF W =10 then PE= PC + TEMP
Condition Codes: MNat affected.
Deacription: Tests the state of 1he N {negatival B and

causes a branch if itis clear, That is, branch it the sign

0L e s COmips ament rest s |T|$5.r e

Addressing Mode: Relatve,

Comments: When used after an operabion an signed bingsny
vgiues, this instruction witl branch il the result (possibsy
invalich s positive, It is gerdrally prefecoea 1 oge (b BGE
instructon after ssgred operations

Branch Always

Source Forma: BREA od: LER& DO
Operation:

TERMP- M

PC-PC - TERP

Condition Codes: Mot affecten
Deszcription: Causes an unconditicnal branch
Addresaing Mode: Relative

Branch Never

Source Forms: BREN od; LERN D00
Oiperation; TEAMP- M|
Condition Codes: Mot atiectan

Description: Does not cause a branch: This instructian is
ementially n no oparation, bob has a bt pattern logically
ralated o branck abways.

Addressing Mode: Relative

Branch to Subroutine

Source Forms: BSR o, LASE D000
Dperation:

TEMP- M

SPesP 1, 5PL PCL

afF'«-5F 1, 5K PUH

PG P3| TEMP

Comndition Codes: Mot sHected.

Description: The program counier is pushed coto the stack
The program countar is then Ieaded with the sum of b
pragram counter and the offset,

dddresaing Mode: Reiative

Comments: A refum fram subrouting IRTS) instruction is
used o reverse this process amd must bea e last instruction
executed i a subroutne

Branch on Overflow Clear

Source Forms: BV o LBVE ODDD

Crperation:

TERAP- bl

IFF W - O then PG PG - TEMP
Condition Codes: Mot affecied

Description: Tests the state of the W (ovarflow?) hit and
causes 2 branch if it is clear, That is. Branchoif the baos
complement result was valid. When used affer an operatian
for bwers COMPEEment 2inary walues, this natroction wit
branch if herswas no overiow,

Addressing Mode: Helalive.

Compare Memory from Register

Source Forms: CMEA £ CMPE °

Operation: TEMP- B M

Condition Codes:
H Lindefined.
M - Sei if the resuitis nagative, Sleaned siherwize.
& Set if the: resull is Dera; cleansd othorwise

Voo B Fan cverflon s generated; cleared atharwise
C . Serifabormowis generated; cleared atbarwise
Description: Compares the caments of memory location

1o the camlents of e specified registar and sets the
apprapriate conditicn codes. Nedther memory lncation M nor
the specified register is moadified. The carny lag repressnts &
borrow and is sat 10 the inverse of tha resulfing Dinary carry
Addressing Modes: Immediste; Extanded, Direct; Indexed

42

Compare Memory from Register

Source Forms: CMPD P CMPY 2 CMPY 2 CMPLL
CMPS P
Operation: TEMP—R - M-8 ¢ 1
Condition Codes:
M Mot zflected.
M. Berif the resull s negative; cleared atherwise
L Batif the rosullis zer: cleared athemwisa,
Vo Setif an overtiow is generated; cleared athanwise

€ Set il a borrow i5 generated; ceared otherwise,
Description: Compares the 15-bit comtents of the
concatenated memory locatons MM + 1 1o the cantents
of the specified register and sots the appropriate candition
codes, Neither the memary locations nor the specified
register is madified uniess autoipcrement or autodecremens
arg used The carry flag represents a borrow and is 2t 10
the inverse of the resulting binary camy,
Addressing Modes: Immediate; Extended: Direct: indexaed

Complement

Source Forms: COM 020 COMA; COMEB

Oparation: k- O+ M

Condition Codes:
H - Not affectad.
M — Bel il ke resull is negative; cleared otherwise
2 — Setil fhe resull is 2ero; cleared othepsiss,

Yoo Alwiays chearad

G Ahways ael

Description: Replaces the contents of meamory Incation M
of accumulztor A or B with its togical complement, When
operating on unsigned values, only BED and BME branches
can be pxpected to behave praperly following & SO
mistruction. When operating on fwos complement values,

aif signed branches are available.

Addressing Modes: inherent: Extended, Direct: Incaxed,

Clear CC bits and Wait
for Interrupt

Sowrce Form: CWalL 25X | E|F |r:|1| | _! M | £ F""Ilﬂ

Cperation;
CER- GOR A MU Possibhy clear masks)
S E {enfire stale saved)
5P SR 1, (SP.-POL
SP.S5F 1, 05P1. PCH
SPCSE 1, (5P USL

S GP - 1, (5P« LISH
SF«-5P - 1, [8P1+I¥L
SP-8P - 1, 18P |I¥H
SR 5P -1, (5P XL
BR8P - 1 (5P |XH
SR 5P 1 (58 DPR
SP--5F- 1. (5P ACCE
BPe 5P 1, (5PN ADGA
SP. 5P 1, (5P COH

Condition Codes; Affacted according to the operation

Description: This instruction ANDs sn immediate byhe with
the conditean code register which may clear the interrupt
rmask bits | and Fstacks tha entire machine state on the
hardwsare stack and then looks for an imterrupt. Wheen a
nen-masked interrupt accurs, mo further machsne Stte
Infoemation reed basaved betore vectorning to the interript
handling routine. This mstruction replaced the MOS800 CLI
WAl sequeance, but does not place the buses ina high-
mpedance state, A FIRG (fast interrupt request) may enter
its interrupt handler with its entire machine state saved. The
BT fresturn from inferrupt) instrechion will sutomatically return
the: entire machine state after 1esting the £ fentira) bit of the
recovered condition code reqister
Addressing Mode: Immediate.
Comments: The following immediate values will have the
frllonming resulis:

FF -« erabde neithes

EF - enatle IRC

BF - grabls FIRD

AF — enable bath

Decimal Addition Adjust

Source Form: DAS8
Cperation: ACCA s ACCA + CF (MSNECFILSM)
where'CF is p Corection Factor, as fallows: the GF Tar each
nicble (BCDY digi is geterrmened soparateh: and s either
Bor 0.
Least Significant Nibble
CHLSM)=-BIFF 1151
ar 21 LSM =4
Most Significant Mibble
CRMSMI -G IFF 1151
ar 2YMSMN <9
or 23 MSM -8 and LSN -9
Condition Codes:
H — Mot afected

Sat if the result is negative; clogred otherwise

Sat it the result is zero: cleared atharwise
Lindetined.

Set it a carry is generated or if the carry bt was set
before the operation; cleared otherwise,
Description: The seqguence of a single-byie add instruction
an accumalator A gither ADDA ar ADCAL and & ollawing
decimal addstan adjost instruction results ina BCD additian
with an approorate carry bt Both values 1o be added must
be in proper BCD form (each nibble such that: 0« nibble=: 20
Muttiple-precision addition must add the carry generated by
this decimal addifion adust into the raext higher digit during
the add oparation (ADCAY immediately prior ta the next
decral addition adjust,

Addressing Mode: Inherent

[I el

EJiASM-L

COM

CWAT

DAL

43

10 / 6809 INSTRUCTION SET

DEC

EOH

TNE

LD
(E-Bit!

Decrement
Source Forms: DEC Q; DECA: DECE
Operation: M- M1
Condition Codes:
H Mt aftacted.
Setif th resalt is negative; clogred athenwise:
Setif b resalt s zere; cleared othersiza.
Setil tha ariganal operand was 10000006 clearsd
athensise,

= M =

C — Mot affected
Description: Subtract ane from the operand. The carry bit
is nat affected, thus allowsng this natruction to be used as
a-op countes o mulliple peetescn compulations. Whan
operatog on ursigned values, only BED and BME branches
can be expected 1o Hehave consstenily, When oparaling an
Pwos commolemant valees, all signéd brarches are available.
Addressing Modes: inherent Caterded: Dirgct Indexed.

Exclusive OR

Source Forms: EORA & EQRE &
Crperatiom; B's H M
Conditicn Codes:
H Mat affected.
M Betif the result ¥ redative: cleared othenase,

i Set it the resull is zern; cleared otharnize

W Alveays Cleared

. hotatteched
Diegcription: The contants of memany locatian & =
syclusive ORed into an 8-hit register.
Addressing Modes: Immediate; Extended; Direct, Indexed.

Exchange Registers

Source Form EXG 51 H2

Operation; B1- -R2

Condition Codes: Mol affected lunless one of the registers
the corddion o ragaster)

Description: Lachanges daka between two desigrated
regisiers. Bits 3-0 of the postbybe define ane register, while
Erls 7= clefirne the Sdbwr, s dollonws:

goig -y 1018 - CCR
Lo Wk e 2 1071 = DFA
NDa=5F 1100 - Lindafined
¢ = PG 1101 = Lindefined
2110 - Undefined 1110 = Lindefined
31171 = Undefined 1111 = Undefined

Only like size registers may be exchangad. (B-Ditwith

0ood0 - &8 1000 =4 &-bit or 18-hit with 18-hit.]
ood1 =X 1001 =B Addresaing Maode: Immediate.
Increment -

Source Forms: INC O INCA: IKCE
Operation: &= M 1
Condition Codes:

H Mot afectad.

e Mol afeshed,

u&ﬂ&l"ipliﬂﬂ: Acds 1o the operand. Thecarry bit is not
affected. thus allowing this instruchon 10 be used as a loop
counter it rmulbphe-precision Sompatations, Whan opsarating
G unsgred values, only the BECQ and BNE branches can ba

R Satif the rased i negative; cleared ptherwise, cupched o behave consistently. Whan opsarating an hwos
2 Sat it the result is rerg: cleared ctherwiso carmpamenl values, all sigred branches ara corractly
Y Satbif the aonginal operand was D17111111 avanlabhs
claared ptharwise Addressing Modes: Inbarent; Extended: Direct Indexed.
Jump

Source Form: IMP EA
Dperation: PC- EA
Condition Codes: Mot atfectod

Description: Program conteod & fransterred 1o the eHective
address,
Addressing Modes: Extended, Dinect Indexed.

Jump to Subroutine

Source Form: J5K E£A
Operation:
SP—5F - 1, (5PL-PCL
SP'+-5P - 1, (5P--PCH
P +-E&

Condition Codes: Not affected,

Description; Program control = fransfermed o the effective
adress after storng the retum address on the hardwane
stack. & BTS instruction should b the ast executed
irstruction of e subrouting,

Addressing Modes: Exlended, Direct, Incexed.

Load Register from Memory

Source Forms: LA P LDB &
Chpesration; B4
Condition Codes:
H - Mol alectied
B Satl the loaced data s negalae; cleared
CilFraise

. — Senil the loaded data is zem; cleared atherwisa

W Shwiays Gleared.

G Mot afected.
Description: Loads the contents of memary [ocation M iria
fhe dezignated reqister.
Addreseing Modes: Immediate; Extended: Direct; ndexed.

44

Load Register from Memory

Source Forma: LODD A, LDY & LDY & LDS &= LDOU &
Operation: B'-- MM + 1
Caonditlon Codas:
H — Mot sffected
M — Setif the iaded data 15 negative:; clearsd
athenwise

£ —3etif the Ioaded data is 7ero; cleared otherwises,
WV — Always cleaned
L — Not affectad.
Description: Load the contents af the memory focation
KM = 1 Into the desigrated 18-6i register,
Addressing Modes: Immediate; Extended; Diract; Indexad

Load Effective Address

=ource Forms: LEAX, LEA8Y, LEAS, LEAL)
Dperation: H'--EA

Condition Codes:
H Mat affectad
M Nat affectad

£ LEaX, LEAY: Satif the result 2 2ard cledred
atherwise. LEAS, LEALI Kot affected.

Voo Mt affected

G Mot affected
Description: Calculates the effective sdoress fram the index
addressing made znd places the address moan indexoable
regjister.
LEAX and LEAY affect the £ {zana) Git to allow use of
these registars as counters snd for MOESOD N DEX
crampatinility
LEAU and LEAS do net affect the £ 4it toallow cleanirg up
the stack while retuming the £ bit a3 a parameter teoa calling

routing, ard also lor MCEE0C INS/DES cormpatibdity
Addressing Mode: Indexed
Comments: Due to the order i which etfective addressee
are caksulated infernaily, the LEAX. X + + and LEAX. X + do
notacd 2 and 1 respectively) 1o the X register, but instesd
lsave the X register unchanged. This alsa apples o the
Y. U. and 5 reqisters. For the expeclad resufts. pee the
laster instruction LEAX 2, X and LEAX 1, ¥
Sorue exarngles of LEA instructon uses arae given in the
follewing table.

instruction Operation Comment
LEAX 10 X X<10-¥ Adds 5-bif constant 10 to X

Lli_nﬁ.}i 500, X 2= 500X Adds 168-hit constant 5000 X,
LEAY ALY YA Agles 8-hit- accumulatar oY
LEaY 0¥ ¥+O-Y Adds 18-hif D accumulator to ¥
LEAL 10, L U -10- U Subfracts 10 from U,

LEAS -0, 5 5-10-5 Used o reserve anea on stack
LEAS 0.3 5+10- 3 Used to clean up stack.

LEAX T R Transters a5 well as adds.

Logical Shift Left
Source Forms: LSL O3 LSLA; I:F'iLF'.,-

Operation: . | |] | | | 0
s T3 fa |]
Condition Codes:
H — Undefired.
M Sat rf the result is negative; cleared atherwise
£ — Sat it the result s zero; cleand otharsise.

V - Loaded with the result of the exclusive OR of bits

six.and seven of the onginal operand.

C Loaded with hit severaf the original operand
Description: Shifts all bis of accurndlator & or B or memory
lacation M are place ta the lafl Bit rem is laaded with o
zera, Bit seven of accumulator & or B or memary [ocation b
i shitted antg the C (oarre] it
Addressing Modes: Inherent Extended: Direct Indesxad.
Camments: This i5 a duplicate assembly-anguage
mnemanc for the single machine instrection ASL,

Logical Shift Right

Source Forma: L5SR (: LSAA LSRR

Operation: O+ | | -|__| - | | |G
b7 Bl

Condition Codes:
H Mot affected

N Always cleared

L. Betil the resulf is zero; cleared gtherwise

Y - Mot affected

G Loaded with bit zero of the original aperand
Description: Performs a logucal shift right on the operand
Shifts & zero inio bit seven and bit zero into the G carm) bit
Addressing Modes: Inherent; Extended: Direct Indexed

Multiply

Source Form: kUL
Ciperation: ACCAYACCH - ACCA - ACCE
Condition Codes:
H Mol affacted.
Mo — Mot affectod.
z Sed if ther result s mern; cleared otheawiss.
Vo Mot affectsd,

G —Bet ACCE tit 7 of result is set; cleared othensse.

Description: Multiply the unsigned teary numbers in b
accumulators and place the result in bath accumulatess
{AI::'_D!-. contams the most-significant byte of the resul),
Lingigned muttiply allows multiple-precision coerations
Addressing Mode: Inherent,

Comments: The C (carmy) bit allows raunding the most-
significant byte through the sequanca: MUL, ADCA &0,

EJiASM-L

e rﬂu
.

LEA

LsL

MUL

45

0/ BBOS INSTRUCTION SET

NEG

NOP

OR

PSHS

PSHU

Negate
Source Forms: NEG O: NEGA: NEGE
Operation: &'« 0 M
Condition Codes:
H Lincklined,
M Zetil the resul iz negathe: cleared alherwise
£ —Sat it the rsult s Zeror cleared otherwise:
V - Setd the origingl operand was {00000,

C - Setif a bomow i generated: deared olherwize
Description: Heplaces the aperand wilh its hwos
comglerment, The G (carry) bit represents a barrew and is el
hp the: irverse of the resulling by carry. Note that 80,
replnced Dy tsall and only in hes case i3 the Y [owvarfiow) bit
wel. The value 00,, iz also replaced by deelf. and only in the
case | the C lcary) it cleared
Addressing Modes: inherant, Extended: Dirert

No Operation

Source Form: NOP
Operation: Mot afected

Condition Codes: This instruction cayses only the program
counter o he incrémented. No other nigistens or mamory
lacations are atfectsd

Addressing Mode: inharent

Inclusive OR Memory
into Register

Soaurce Forma: ORA & OHB P
Cperation: B~ B v M

Condltion Codes:

H Naol atlected,
Mo Bat i Fhe peault s negative: cloared oo,

£ Satof the result ig zera; Sleared oibwrwise

Vo Al clicned

G Notaffected
Description; Pedarms an inciugive OR aperation Detwaes
the contents of accumulilor A or B and the contents of
mermory incataon M and the result is stared in secumulato
Aorid
Addressing Modes: Immediate Extendes: Direct Indexa

]n:lusiv& OR Memory Immediate
into Condition Code Register
Sowrce Form: ORCC & XX

Dperation: B« Ry b

Condition Codes: Allecteg accoodng 10 196 nperation

Description: Pedorms a0 mclusive OR apemlion Detwesn
the confents of the conditon code registers and e
immediate value, and thie result s placed i the condition
code register This mstruction may be used 1o set sl
masks [thaabla mternnts) or any ather bit(s]

Addressing Mode: Immetate

Push Registers on

IFF LS of postbyie sel. then: SP. SP 1, ISP 1YL
SR - BP - 1, (5FL 1IYH

the Hardware Stack IFE b4 of postbyte set then: SP- SP 1 (5P XL
Source Form: SR SP - 1, (5P [XH
Flrﬂ'sgm W""—ﬂ IFF K3 cl Fﬂq=h'!|"1ﬂ ot theare S5R- 5P 1. 15P1L OFRH
PSHS # [ABEL IFF b2 of posthyle set. then: SF- SP. 1 (SP. ACCH
Poatbyte: IFE b1 of posthyle s then; SP'=5F 1, (SP. ACCA
b7 b5 b& be B3 b2 b1 BO Z ;;F_hﬂ g! pasthyte ﬁvﬂ r-::-,hmr SP'. 8P 1. (5P CCR
= . : on Codea: Mol affecied
|_£':] ':'i il T_"': TDPL B | "'"_-.[E':] Description: Al some. o nonn of the processar registers
push ordor - are pushed onie thi hardware stack (with the exception of
Operation: the hardware stack pointer iteald)
IFF b7 of posthyte sol, then: SP°-SP 1, (8P, PCL Addressing Mode: Immedsate
SP~--8F 1, (5P PCH Comments: A single register may be piaced oo he stack
IFF o6 of postbyvie set, then: 5P« 8P 1, (5P USL with the condition codes set by doing an autodecroment
SH'. 8P -1, (5P USH stone onto the stack fexarngle STX S
Push Registers on IFF 05 of posthyte set, fen US- US 1, WSk ML
o v L 1, LGk
the UEEF EIEER IFF b of postoyte sel, there US™- US 1, (USk-IXL
Source Form:) LIS LS 1 (U5 [XH
PSHU # LABEL IFE b2 of posthyte set, then: US - US - 1, (USk ACCE
Pttt IFF b1 af postbyte sal, therm: US'-US- 1, (USk ACCA
BT b6 b5 b4 B3 b2 b1 b0 AT e b, flen P el LR Eon
== == 3 = ian 4 Mot aflectad,
Lpl:'-_l_”,l Y| xjoP|B | '“*_I‘-ﬂ_, Description: All, some, or none of 1he processor regislers
push arder - are pushed onto the usar stack (with the exception of B
Operation: user stack pairtar {sedf,
IFF b7 of pastbyte sel, them: US'-US 1, (USk PCL Addressing Mode: immediale
US--LUS 1, (US)k PCH Comments: A sngie register may be placed ar b stack
IFF b ol posiiyte seb then: US-US 1, (USk SPL with the condition codes set by doing an aulsdecroamend
Us US- 1 (USk SPH stone onta Ihe siack (examole: ST LD

46

Pull Registers from
the Hardware Stack

Source Form:
PULS renistar fist
PULS #LAREL
Pastbyte:
b7 b8 bS5 bd B3 w2 h-'

[Pcfuy[x[or[B A |
« pull ordar

Orperation:
IFF b0 af pestbeyte set, then: CCR

IFF b af postbyie set, then: AGCA
IFF b2 of posttyte set, then: ACCE -

IFF b3 af postbyle set, then DPRA
IFF bt o postiyte set, then IXH
XL

- {SP), 5P 5P 1

[SP), 5P 5P+ 1
[SF), 5P 5P 1
~[8P), 8P §P . 1
- (SP). 5P 5P < 1
(8P 5P 8P+ 1

IFF b& of powthyte sei, thea: YH' - (SP), 5P« 5P +1
L' «ASF), 5F'=-5F + 1
IFF hE of posthyte set, then: USH' - (SP), 5P'--5P + 1
LISL 5P, SP--5F +1
IFF b7 of postoyte sef, then, PCH® « (5P}, 5P'«-GP 11
PCL- ISP, 5P --5F +1
Condition Codes: May be pulled from stack, not affected
ohemean s,
Description: All, some, or nong of The processor registers
are pulled from the fardware sfack [with the excepticn of the
hardweare stack pomtar itselt).
Addressing Mode: Immediate.
Comments: A single regester meay be pulled from e stack
with condifion codes st by doing an qutaincremesnt e
from the stack (example; LOX. S+ + L

Pull Registers from
the User Stack

Source Formy:
PLILLI register sl
PULLI # LABEL
Prosthyte:
by b b5 b4 b3 b2 b1 bh
[Pe]u v [xJor[8] Jec]
~ pull proiar

Operation:
IFF b0 of poatbyte set. then, CCR

LIS LIS = LIS+ 1

IFF b1 of postbyte set, then: ACCA - (LIS) LIS LIS

IFF b2 of postbyte set. then; ACCE'- 1
ISR LIS S+
ISR LS LS
AUSE LIS LS 01

IFF B3 of posibyte set, then; DPR'
IFF b4 of postoyte set, then; KH
[¥L

(LIS LIS LIS

IFF bh of posthyie set, than: [YH - (US), US--US + 1
IYL' S Us'-—US5+1
IFF b5 ot posthyie set, thens SPH (LIS LIS --LIS +1
SPL' - US) LIS =15+ 1
IFF b7 of postbyie set, then: POH + 0US), LIS - LIS 1
PCL" « U5 US'- US + 1
Condition Codes: May be pulled from stack; not affected
atharwisi,
Descripticn: All; some, or none of tha processor registers
are publed fram the user stack Dwith the excaptian of ths user
siack poantar itselfl.
Addreasing Made: Immediate.
Comments: A single register may be pulled from the stack
with condition codes set by doing an autaincrement load
from the stack lexamphe: LDXU = +]

Rotate Left
Sourpe Forms: ROL O BOLA; F-I_DLEI

Operation: ‘ ’ ILI
|

- Sat if the resull is negative; cleared otherssa,
St if thea result i rertc claarad athermnmse,
Loaded with the result of the exciusive OF of bits
six and seven of the original operand.

C — Loaded with kit saven.of the original aparand

o [u

oy k3 Description: Fotates all bis of the operand one place left
Condition Codes: through the C Icarr) bt This iz a S-bit rofation.
H — Mot aftected, Addressing Mode: inhenent Exterded: Diract; Indesacd
Rotate Right
Source Forms: AOR O RORA: BORE
| El . MW — Sat if the result is negative; cleared atherwise.
Operation: Z — Set if the result is zem; cleared atherwise
[T T T TT] i pdiing
” [G — Loaded with bit zero of the previous operand
b7 . b Dwscription: Folates all btz of the cperand ome FEace rghit
Condition Codes: through the Clcarry) Bt This is a 2-bit rofation.

H — Mot affecied.

Addressing Modes: Inherent: Extended; Drect, Indexed,

EJiASM-E

PULS

PULL

ROL

ROR

47

10 / 6808 INSTRUCTION SET

RTI

TS

SBC

SEX

81
(1B-Bit}

SUB
(gB-Bit)

Return from Interrupt

Sowrce Form: HT!
Dperatipn: CCH - [SPL, 5P S 1 then
IFF CCR bl E i set, thery ACCA'- [SP), SP. S0

ACCES 18P, 5P'. &P 4
OPR' - (5P SP.. 2Py
M - 1SP) BPSP
WL - iRF) SR. 5P
[¥H' - (3P), BP. 5P
IYL® - (5P SP. S5
LISH" + (5F5 SP 5
USL' ~ (8, SP. 5B

I

b

PCH « (5P, B SP ¢
PCL" o« (5P, 5P 5R 0
IFF CCR bt E i clear. than: PCH' - (SP). PSP « 1

PCL' - ISP SF - 5P+ 1
Condition Codes: Recovarad from the stack,
Description: The sivied machae state is recovered from the
Farcwane: 4tack and coniro! = referned i e alsrmning
program. IF ke recaverad E (entire] bitis claar, o indicatos
[t anly & Subset of the mpchme sl was saved (refurm
ess and condibon cotes) and onty that subset is
rECOveEreEg,
Addressing Mode: Inherent

Return from Subroutine

Sourco Form: ATS
Dperation:
PCH'<15P), SP+-5P 11
PLL - ISP SP-- 59 1

Condition Codes: Not affecied

Descriplion: Progrem contral is refumed from the
susirouting 1o the caling program. The return pddress
i% Bulled drpen the 51

Agdressing Mode: Irharim

Subtract with Borrow

Souvrce Form: SBCA - 5BCH O

Operation: R'- 5 M-

Condition Codes:
H — Undafned,
N Bel i the resull s negalive: cleared othenwize
L Sl e result ey ofeared ofnesars

'l_.: S0 @ overfiow i geneatedt cleared otherwion

L - _sm if a Derrmw is generted. clearsd obthensize,
Lescription: Subtract: tie confents of merr=ary locanan b
ard the basmow (in the C lcarmy) B from the coslents of the
dezmnaen 8- redister. a0 phaces the result = at
register. The G bt represents a borrow and 19 set o the
mverse of the resutting binory carry
Addressing Modes: Immegate: Extended. Diroct Indexed

Sign Extended

Sourcd Form: SEX

Operation:
I hit saven of ACCE iz sat then ACCA' s FF,
Blga ALCA - D0,
Condition Codes:
M Not offected

N — Set if the resull i negatve; cieared athensise

£ Setil the rasult is 2er, cleared atherwice

Yo Nol aliectod

T — Nol affecind,
Descriplion: This instruction transforms a twes complament
bt walue o accumulator B into a bwos compglement 18-5i
vilise in the D aocumataton
Addressing Mode: Inherant

Store Register into Memory

Source Forms: STA P, 5STE P
Operation: M -8
Condition Codes:
H Mot a¥fecied,
N Sl the resyll e eegquelied Clegred Othvanaes

£ ot the resuitis rero; cleased otherwse

Voo Ahways cliied

. Not allectid
Description: Writes the contents af an B-tat register into a
mermoey lecation,
Addressing Modes: Extended: Direct Incewsd,

Store Register into Memory

Sourca Forma: STD P STR P STY P 5TS A, 8TU P
Operation: M M« 1" R
Condition Codes:

H - Mol attected

N Setd the resul s negalve; Cwared othomwss

£ —Sm I the regult Is 20, céared otherwise

Y — Always cleansd

C — Mo affecied
Description: Writes the contents ol o 16-bit register 10 twa
consecubve memeey locafions
Addressing Modes: Cxlended: Direct Indexed

Subtract Memory from Register

Source Forma: SUBA & SUEE P
Operation: H'- F W

Condition Codes:
H Lindetired
Mo Setd the rasull is negatve: cleared otherwse,

Z Set o the resull is 7o cleaned atherwise

¥ — Sat il the overfiow is generated: clesred olhoreisa
i St of 2 Barrow is gueneratedl cleared oferwise
Description: Sublracts the value in memcny lacsian M fram
it conients of a desgnated 8-bil reguster Thae G lcamy? bit
represents & bormow and i Set fo the irwersa af the resulling
Eenaary corry,
Addressing Modes: Immediate; Extended Direct: Indesed,

48

Subtract Memory from Register

Source Forms, SUBD P
Operation: B» B - MM+
Condition Codes:

H

z

Mot atfecied.
r Satif the result & peoatived Cleared athervise.
Sat if the result s 2o clearsd otheryise.

Vo Sat il the overfiow s generated; cleared dtherwise.
Co— St il a borrow is generated; clearsd ciherwse
Desgcription: Subiracts the value in memory locatan
B A+ 4 Freen the contents of a designatad 16-bit regester
Thia T (carry] bit represents a bomow ard is set b the
inversa af the resulting binary camy,
Addressing Modes: Immediate: Exfenced; Direct: Indexed.

Software Interrupt

Source Form: SWI
Ciperation:
Sat E (pnfirg State will be saved]

SR
SP-
EP
5P
5P
S
5P
f=t=4

s

sP
S
SF
5P
5P
SP
SF

—5F

1, 5Pk
1. (5P%
1.18P).
1. [5F.
1, [SF.
1. [5P)-
1, 5P
1, 15P.

PLL
PCH
LISy
USH
1L
I"H
(XL
IXH

SR.. 8P 1, (5FL-DFR

SR-5F -1, (5PR-ALCB

SP SR -1, (BPY--ADCA

SP 5P - 1, (5P-CCR

Sat |, F (mask =mterrupts)

P (FFFALIFFFRD
Conditicn Codes: Mot afiectan
Dascription: All of the processor reqgisters are pushed anta
the harchware slack twth the exoeption of the hardware stack
poirtar itsalf], and control is transferred throwgh the software
intarrupd vectorn Both the normal and fast infermupts are
mexsked (disabled).
Addreasing Mode: nbaren?.

Software Interrupt 2

Source Form: SWiz
Operation:
Set E lentire stale saved)

SP'. SP
SP. GF
SP. G
SP'-SF

P
SP-.
5P

5P

SP
=
P
P

1, (5P
1, 5Pk
1, ISPk
1, (5PN
i, 15P%
1, 15H.
1. [SF)
1. (58

PCL
PCE
LSL
LSH
YL
IH
LA
lxH

SPr- 5P -1, (2P DPR

SP- 5P -\, [SPN-ACCB

B 8P - 1, (SPk-ACCA

SP SR - 1, I5PW-0CR

PG (FFRALFFFS)
Condition Codes: Not affectac.
Description: All of the processar registers are pushed onfo
the bardware stack lwith the pxcaption of the hasdwans Stack
poirther itself], ancd contros s fransierred throogh ihe soifwans
ntarrupd 2 vector, This interrunt is available o the end users
and must not be used in packaped software. THis intermup
doers rat mmask (disablel the normal ard fast internapls
Addressing Mode: Inheren

Software Interrupt 3

SBource Form: SWI3
Operation:
el E lentire siate wifl be saved)

S,
S
5P
Sh.
SH
b= ol
=
SR

3P
oP
sP
&P
=P
o
sP
5P

1, (5P
1. (5P
', (SF)
1, (SP).
! [SP)
1, [SP)-

PGL
PLCH
LISL
L15H
IfL
IH

1. [SP1—1XL

i (5P

IxH

SF. 5P 1.(5P» DFA

S 5P - 1, (5P ACCE

SPa-BP - 1 05PN ACGH,

5P 3P 1, (5F. CCR

PCs (FFEZEFFED)
Condition Codes: Mol atlected
Description: All of the processor régisiers are pushed onfo
the Ferdaare stack leath e cxceptan of the hardwane Stack
pairter itsalf), and cantrod 15 ransierred throwgh the solfiware
intarnupt 2 vectar, This mberrupt does not sask disable) the
rearmal ared fast sterrupts.
Addressing Mode: Inharent,

EQTASM-E

SUEB
(1B-Bit}

SWIZ

DWIa

49

10 / 6803 INSTRUCTION SET

—
5 YR [: Synchronize to External Event

Source Form: SYNC FAST S¥YNC WAIT FOR OATA
Operation: Siop processing instructons Interrip!
Condition Codes: Mot affected, LDA ISC DATA FROM DISC AND
Desacription: Wher a SYNC inatruction i5 executed. the CLEAR INTERRUPT
procassoc enters 4 synchronizing state, stops processing STA X PUIT IN BUFFER
instructions, ard wails for an inferrupt. Whon a0 miermaps OECS COUNT IT, DONE?

BMNE FAST GO AGAIN IF NOT

TFR

T5T

FIRG

ocLurs, the synchrgnizing s1aln i cleared and processing
contnues. if the mtormupl enabied. and @ last three oycles
of more, the procesaor will perform the interrupt routine.
he inerrupt is masked or is shorer than throe cyoles. the
proCéssor simply continwes 10 the nest instiraction. While in
Ihe gynchranzing stale, The adosess and dilh buses e o
ther hggh smipediance state.

Thid instruction provides sofware synchronizotion with a
hardware process, Consider he Falbowing example for high
specd acnuisition &1 data;

The synchronzng state is clezred by any mbermupt /O
course, gnabiod interrupts at this poat may destroy the data
transter and, as such, should represert only emergency
concan:

The am¢ connection used for intermupl-crive 149 sensoe
may ais be used for hgh-speed dirls translers by softing
the imtarrupd rrask and using the SYNG imstructian os the
ENoVE BXAMmple demonstrates

Addresszing Mode:; Inherent

Transfer Register to Register

Source Form: TFR 81 /2

Operatipr: A1 -R2

Condition Code: Not affected unless B2 is the condition
coli register

Dascription: Transters data between bwo designated

refesters, Bits 7.4 of the posthvbe defing 1 Source recintisr,

whilp bits 3-0 gefne the destination registen, as fofiows:

OBi0 =Y 101 CCR
Qb1 = Uus 1011 = DFR
Qog - 59 I - Uvchebned
Q1N = PG P10 = Undefined
V10 = Updetined 1110 = Undefined
0111 = Lirndefned 1911 = Unsatined

Oy llop nize registess may be transferred. (8.0 1o 8-bit,

Qo000 - AB VAN — A o 16-Dd 1o 16-hit)
LOnT - X ese I Addressing Mode: Irmmedate
TEEt ODescriplion: Set the N (negatn) ang Z (remd hits according

Source Forms: TAT Q- TSTA, TSTR
Operation: TEMP. & 0

Condition Codes:
H ol affeched
B Selil the résult i negibve, Coarim o bhenaise,
2 Sabil the rasalt is 7ery bl ey
Vo Alhways clopred
C Notatecied

o the contents of memary locaton M, and clear the Y
(overtieaw] Bt The TST instruction pravides only minimum
irtorrmation when testing urisigned values: since no unsigned
watlues i gt than rera, BLDand BLS have no utility. Whila
BHI cowd b used after TST. it provides exactly Ihe same
rontrod an BME which o oreferrod. The sigaoed beanches are
—. 1=y
Addressing Modes: Inherent Extended: Daect Indexad
Comments: The MOBBOO processte clars the G (carmy nit

Fast Interrupt Reouest
(Hardware Interruptl

Ciparation:
IFF E fit clegr, thare SP SP 1 (SP). BOL

S8R 1, 15Ph PCH

Giear £ (subset s1ale i savem

S 5P 1, 5P CER

St F) imask further inlorrupis)

PC - {FFFELIFFFT)
Conditicn Codes: ot affactisd,
Description: A FIRC (fast imterrapt reguest! with fhe F (g
wnlerfupd requist mask) B clesr cuses this infermupd
Siaoe 1o oot at the end of the current nstnecion. The
program counter Gkl condibarn cods repsaiar ara peshed

ool R hardweare stack, Program eontrol is transterred
through thie fast mberruo! reguest sechor. A BT roturn froen
inferrugt) sshrection ridums the protessor to e Osgpinal
ask I i possibie to enter the fast interrupl regquest routne
wlhy e ntire maching state saved if the fast inferrupt
reguest occurs aftar o clear and wait for interrupt instruchon
A narmz inferrupt reguest has lower priority than the fas)
e reglesl and i preverited om sitermupting the

st impecrupt request routine by aulcmalic sefting of e
Hingerrugt request mask bit. This mask ot could then be
resat cunng the interupt soutine o pricnty was nat desired.
The fast intefrupd requast allows operations on memony, TST,
INC. DEC, elc. instructions withinut thi: overhend of saving
the entirg mackne SI006 on e sinck

Addreasing Mode: [rhoront

Interrupt Request
(Hardware Interrupt)

Ciperation:
IFF | bil clear, then; 5P --3P - 1, (5P

5P 5P - 1, (SP)
SR S - 1, (GPL
SRS 1, (5P
SP. SP -1, (6P
SP. SP - 1. (5P
SP. SP 1, (5P
SPSP 1150
SP. SR 1, 500
SP. 5P 1, (SP)
5P BF - 1, (8P

PCL
PCH
LISL
LISH
1YL
IYH
1.

| H
LA
ACCE
ACCAH,

Sed E [entire state saved)

SP'--8F -1, (5F)--CCR

Set | (mask further IR0 inferrupts)

RC - (FFFRLIFFFO)
Condition Codes: Not affectad
Description: If the | Goterrent request maskd i is clear, a
low level on the RO nput causes this interrugt Sequence 1o
oocur at the end of the curent instruction, Control 1s
retumed o the interrupted %mgm’" wsirg a BT fraturn from
interruntl mstrechion. & F (agt inberrupt reduast] may
interrupt & narmal TR0 Gterupt request] routine and ba
recagnizad antime after e interrupt vectos is takan
Addressing Modea: Inherent.

Non-Maskable Interrupt
(Hardware Interrupt)
Cperation:

SFLCEP 1 IEPR- PCL

ks 5P 1 A5P) PH

SF-SP - 1.05P- USL

SR BP 1) 15P) USH
SP-8P - 1, 15P)-|¥L
SP8P - 1 15P)- IYH
SR 5P - 1 ISP XL
G- 5 - 1 1S |WH
SR. 5P - 1.15P). DPFA
SF.-5P | (5P ACCR
SP SR 1 5P ACCA

SptE |.Ef“-1-‘-’L: shabe smeel
SR 8P 1,45F. CCR

Set |, Fimask interrupts)

PC - IFFFCYIFFFL
Condition Codes: Mot affecied. Irj
Description: & negatvs adges antha KM inon-maskabla
riberrupd) inpul cavses all of the processors ragisters
(Exoepd the harctware stack poinier] to be pushed onto the
Pardwane stack, starting at the end of the curent instnactica.
Program control is transferned through the NI vector
Successive negative edges on the NMI input will cause
succassive MMl oparations. Non-maskable intermipt
operation can be internally blocked- by a RESLT oparatian
arvd any non-maskable irterrupt thiat accurs will b atckeadg 1
thiz happens, the man-maskable inkarrupl aparatan will coour
after the first load inte the stack pointer ILDS; TFR rs; EXG
r.s efchalter HESET
Addresaing Made: Inhersnt

Restart (Hardware Interrupt)

Operation:
COR - X1 KK
OFR'--00,,
PC'+ (FFFEXIFFFF)

Condition Codes: Mot affected.

Description: The processor = initiakzed reguired affer
power-onl o start peogram executon. The stading address
is fetched from the restat wacior

Addressing Mode: Exlendoed; Indirect.

EJTASM-

NMI

RESTART

51

EJTASM -+

Appendix A/Editor Commands

Definition of Terms

line
A line number in the program. Any lines between 0-63992 may be used. These symbols may be used.
First line in the program.
y Last line in the program.
Current line (see definition below).

current line
The last ine inserted, edited, or printed.

staritline
The line where an operation will begin. In most commands startline is optional. If omitted, the current line s used.

range
The line ar lines to use in an operation, If more than one line are in the range, they must be specified with one of these
symbals:

to separate the startline from the ending line
' to separate the startline from the number of lines

increment _ _ _ _ o
The increment to use between lings. In most commands, increment is ontional. If omitted, the last specified increment
is used. On start-up, increment is set to 10.

filename
A 1-8B character name of a tape file.

PAGES
COMMANDS DISCUSSED

Cstartline, range, increment - _ 11
Capies range to a new location beginning with startiine using the specified increment. startling,
range, and increment must all be included.

C500,10@:15@ .10
Drange i1
Deletes range. If range is omitted, current line is deleted.

pDig9 Diee:tse D

Eline 10
Enters a line for editing. If iine is omitied, current line 15 used.
E1Q2 g
These are the editing subcommands:
A Cancels all changes and restarts the edit.
nCsfring Changes n characters to string. If nis omitted, changes the character at the
current cursor position.
nD Deletes n characters. If nis omitted, deletes character at current cursor
position,
E Ends line editing and enters all changes without displaying:the rest of the
line.
H Deletes rest of line and allows insert.
| string Inserts string starting at the current cursor position. While in this Mode, (—

deletes a character.

35

APPENDIX A / EDITOR COVIMANDS

e — e — — —_—
COMMANDS PAGES
DISCUSSED
nKcharacter Deletes all characters from the current cursor position to the nth occurrence
of character. If nis omitted, deletes to the first occurrence.
L Lists current line and continues edit.
0 Quits the edit and ignores all changes.
nScharacter Searches for nth occurrence of character If nis omitted, searches for first
occurrence.
X Extends line,
‘ENTER Ends line editing, enters all changes and displays the rest of the line.
(SHIFT) (= | Escape from subcommand.
n/SPACEBAR Moves cursor n characters to the right. If nis omitted, MOvVes one space.
ni= Moves cursar 7 positions to the left. If 7 is amitted. moves the cursor one
position.
Fstring
Finds the string of characters. Search begins with the current line and ends each time the string
is found. If string is omitted, the last string defined is used.
FREC F
Hrange 10
Prints range on the Printer. If range is omitted, current line is printed.
HI@@ Hi@@:Ze@ H
|startline,increment 11
Inserts lines beginning at startline using the specified increment startling and increment are
optional.
IL50.,5 1208 [+«18@
L filename 10
Loads the specified text file from cassetie tape. If filenameis omitted, the next file is loaded.
L SAaMPLE L
Mstartline,range,increment
Move command. works like copy except the original lines are deleted.
Nstartline,increment 11
Renumbers beginning at startiine, using the specified increment. startiine and increment are
optional.
N1@D:58 nNI1@@ N
Prange 10
Displays range on the screen,
FigG:Z2080 PIBD'S P= =
=]
Q 11
Returns to BASIC. Type EXEC 49152 to return to Editor from BASIC.
Rstartline,increment 11
Allows you to replace startling, and then insert lines using increment, startiine and increment
are optional.
RI1D@:10 R19® R
- —_— = — —

26

EJiASM -+

PAGES
COMMANDS DISCUSSED

Trange . . 10
Prints range on the printer, without including the line numbers

TI1ED TIAR: 5006
Vfilename

Verifies filename to ensure that it is free of checksum errors, Works like BASIC's SKIPF com-
mand. If filename iz omitted, venfies next file found.

UTEST

£ 5, 11
Go to ZBUG.

=3

Scrolls up in memary,

[

Scrolls down in memory.

57

APPENDIX B/ ASSEMBLER COMMANDS

Appendix B/Assembler Command & Switches

PAGES
A fifename swilch. . . 13
Assembles the text program into machine code. Any of the following switches may be used:

AD Absolute Origin. (Applies only if /IM is set.] 15
M In Memaory Assembly. 13
‘LP Assembly listing on the printer. 13
MO Manual Origin, (Applies only if /IM is sel.) 15
INL Mo listing printed 55
INO Mo object code generated. 13
/NS No symbol table generated. 13
IS5 Short screen. 13
'WE Wait on assembly errors. 13

Uniess the /IM switch is used, the program will be assembled on tape using the specified one
to eight character filename. If filename is omitted. NONAME is used.

Examples
Fl 3&:'1'3.[:.-'-.["1
H
alIMAD

58

EdASM+

Appendix C/ZBUG Commands

Definition of Terms

expression
COne or more numbers, symbals. or ASCIl characters. If more than one are used, you may separate them with these
operators:

Multiplication ! Addition :

Division DIV, Subtraction -

Modulus MOD, Equals EQL

Shift - Mot Equal NEQ.

Local And AND. Positive t

Exclusive Or XOR. Megative

Logical Or OH. Complement NOT
address
A location in memory, This may be specified as an expression using either numbers or symbols.
filename
A one to eight character name of a tape file.
- COMMANDS PAGES
| DISCUSSED
B 18
Continues execution of the program after interruption at a breakpoint.
D 18
Displays 2l the breakpoints that have been set.
E
Exits ZBUG and enters tne Editor.
Gaddress 18
Executes the program beginning at address.
L filename ([ENTER) 18
Loads the machine-code file from cassette tape. |f filename is omitted, the next file is loaded.
Pfilename first address last address start execution address 19
Saves the contents of memory from start address to ending address on tape. execution
address specifies the address where the program being saved begins execution,
R 18
Displays the contents of all the registers.
Taddress1 address2 19
Displays the memory locations from address to address?, inclusive.
THaddress 1 addressZ2 19

Prints the memory locations from address | to address?Z, inclusive.

Usource address destination address count
ransfers the contents of memary beginning at source address and continuing for count bytes
to another location in memory beginning with destination address.

Vfilename
verifies date on the specified file ar the next file on the tape if no filename is specified.

59

APPENDIX C/ZBUG COVIMANDS

COMMANDS PAGES
DISCUSSED
Xaddress 18
Sets a breakpoint at address. |If address is omitted, the current location will be used.
Yaddress 18
geletes the breakpoint at the specified address. If address is omitted, all breakpoints are
eleted.

Examination Mode Commands

A ASCIl Mode 0

B Byte Mode]

M Mnemonic Mode B

W Word Mode 5

(the default is M)
Display Mode Commands

H Half Symbolic 17

N Mumeric 17

S Symbolic 17

(the default is 5)

Numbering System Mode Commands

Obase Output 21
Ibase Input 21
(basecan be 8. 10, or 16. The default is 16.)

Special Symbols

address/ S
register’ 18

Opens address or register and displays its contents. If address or register is omitted, the last
address opened will be re-opened. After the contents have been displayed. you may type:

New contents To change the contents. &
(ENTER) To close and enter any change, &
BREAK) To close and delete any change.
- To open next address and enter any change. 5
S To open preceding address. =
(#] To branch to the address pointed to by the instruction beginning at the cur-
rent location.
- To force numeric display mode. 17
= To force numeric and byte modes.
: To force flags.”
address, 18
Executes address. If address is omitted, the next instruction is executed.
expression= 21

Calculates expression and displays the results

‘The colon does not actually have anything to do with the CC (status flag) reqister. It simply
interprets the contents of the given address AS IF it contained flag bits.

Appendix D/ Editor Error Messages

The following are descriptions of the error messages you can get while in the Editor, Assembler, or ZBUG:

BAD BREAKPOINT (ZBUG)

You are attempting to set a breakpoint (1) greater than 7,
{2} in ROM, (3) at a SWI| command, (4] at an address
where one is already set.

BAD COMMAND (Editor)
An illegal command letter was used on the command line.

BAD COMMAND (ZBLIG)
You are not using a ZBUG command.

BAD LABEL (Assembler)

The symbol you are using is (1) not a legal symbol, (2) not
terminated with either a space, a tab, or a carriage return,
ar (3} has been used with ORG or END, which do not
allow labels. (4] longer than six characters.

BAD LINE NUMBER (Editor)

You are using a line number that is not in the range of
1-839498, If you are loading a file from tape, this could
mean the tape is bad or the tape does not contain a TEXT
file.

BAD MEMORY (Assembler)

You are attempting to do an in-memory assembly which
would (1) overwrite system memory (an address lower
than hexadecimal 0600), (2) overwrite the edit buffer or
symbol table. (3) go into the protected area set by
USRORG. or (4) go over the top of HAM.

If using the J/AD switch, check to see that you've included
an ORG instruction. When using /MO, check the
addresses you set for BEGTEMP and USRORG. This
could also be caused by the data not being stored cor-
rectly because of some code generated by an in-
memaory assembly. See the Chapter on Assembling for
more information.

BAD MEMORY (ZBUG)

The data did not store correctly on a memory modifica-
tion. This error will occur if you try to modify ROM
addresses, or store anything beyond MAXMEM,

BAD OPCODE (Assembler}
The op code is either not valid or is not terminated with
a space. a tab or a carriage returmn.

BAD OPERAND (Assembler)
There is some syntax error in the operand field. See the
syntax for the instruction in Section |1

BAD PARAMETERS (Editor}
Usually this means your command line has a syntax
error.

BAD PARAMETERS (ZBUG)
You have specified a filename greater than eight
characters.

BAD RADIX (ZBUG)
You have specified a numbering system other than 10, 8
or 16.

BUFFER FULL (Editor)
There is not enough room in the Edit Buffer for another
line of text.

BUFFER EMPTY (Editor)
The specified command requires that there be some text
in the Edit Butfer, and there isn't any.

BYTE OVERFLOW (Assemblier)

There is a field overflow in an 8-bit data quantity in an
immediate operand. an offset. a short branch, or an FCB
pseudo op.

DP ERROR (Assembler)

Direct Page error. The high order byte of an operand
where direct addressing has been forced (<) does
not match the value set by the most recent SETOP
pseuda op.

EXPRESSION ERROR (Assembler and ZBUG)
Same kind of syntax error in an expressian or division
by zero.

FM ERROR (Editor and ZBUG)
File Mode Error. The file you are attempting to load is not
a TEXT file (if in the Editor) or 2 CODE file (if in ZBUG).

I/0O ERROR (Editor and ZBUG)

Input/Output error. A checksum error was encountered
while loading a file from a cassette tape. The tape may be
bad, or the volume setting may be wrong. Try higher,

MISSING END {Assembler)
Every assembly language must have END as its last
command.

MISSING INFORMATION (Assembler)
(1) There is a missing delimiter in an FCC pseudo op, or
(2] There is no label on a SET or EQU pseudo op.

MISSING OPERAND (Assembler)
One or more operands are missing from a command
reguinng one.

MULTIPLY DEFINED SYMBOL (Assembler)
A label has been defined mare than one time.

NO ROOM BETWEEN LINES (Editor)

There is not enough room between lines to use the incre-
ment you've specified. Specify a smaller increment or
renumber (N) the text using a larger increment. Remem-
ber that the last increment you used is kept until you
specify a new one.

61

EDTASNV -

APPENDIX D/ EDITOR ERROR MESSAGES

NO SUCH LINES (Editor}
The specified line or lines do not exist.

REGISTER ERROR (Assembler)

(1) No registers have been specified with a PSH/PUL
instruction, (2) A reqister has been specified more than
once in a PSH/PUL instruction, or (3) There is a reqister
mis-match with an EXG/TFR instruction.

SEARCH FAILS (Editor)
The string specified in the Find (F) command could not
be found in the edit buffer, beginning with the line speci-

fied. If no line is specified the current line will be used.

SYMBOL TABLE OVERFLOW (Assembler)

(1) The symbol table will extend past USRORG into the
protected area of memory. (2) There is not enough room
between BEGTMP and USRORG for the edit buffer and
symbol table, At least 300 hexadecimal bytes must be
aliowed for BEGTMP. (See the chapter on Assembling.)

UNDEFINED SYMBOL (Assembler}
The symbol in the program was never listed in the label
field or defined with an EQU statement.

62

EJiASM-

Appendix E/Memory Map

DECIMAL HEX 14B CONTENTS DESCRIPTION
D105 0-69 Direct Page RAM Can be used for machine-code programs.
112-285 70-FF = | Cannot be used for machine-code programs.
256-273 100-111 Intem_gl_ Use Interrupt vectors.
| 274-276 112-114 USRJMP Jump to BASIC's USR routine. |
- 277-281 119-118 Can be used for m n"a-:hlne t:m:ie Programs. |
252 11A Keyboard Alpha Lock 0 - not locked: FF - locked. |
| 283-284 11B-11C keyboard Delay Constant |
EELErE-S? 110-151 Can be used by machine-code programs. |
.'33_‘_5_ 3_45_ 162-159 Keyboard Roliover Tables 0
346-349 15A-15D | Joystick Pot Values
| 350-1023 15E-3FF Internal Use]
| 1024-1535 0400- D@_F_I_: Video Text MEr‘nDr'_.r |
| 1536-top of RAM | DB0O-top of RAM | If the Editor- er is in control, it allocates these Random Access memary

ton of RAM s top of BAM is atkiréﬂﬂﬂiﬁ# smnﬁnurtmﬂ-m?mmamswﬁmm E:hap:mr.ﬁmhmmm
16383 for 16K IFFF for 16K _how to change this):

systems, 32767 systems: 7TFFF 1. Temporaries Space reserved for temm}mr-,r storage of EDTASM's
for 32K systems for 32K systems variables buffers, and stacks {this consumes hexadecimal
200 bytes).
2. Edit Buffer Starage space for the program lines you insert with the
Editor.
3. Symbol Table Storage space for all the symbols in your program and
their correspanding values.
4, Object Code Storage space for your assembled program.
HBASIC I in contral, it allocates these Eafmmmmw locations in this
manner;
1, Graphics Video Space reserved for graphics video pages. 6144 bytes or
Memory 4 pages are reserved for this on start-up. This value can

be reset by the PCLEAR statement: number of pages
reserved by PCLEAR X 1,536 bytes per page. (Note: All
pages must start at a 256-byte page boundary — e, a
memory location divisible by 258.)

2. BASIC iﬁfn—g ram Space reserved tor BASIC Programs and Variables,
Storage 8455" bytes (16K systems) or 22,839° bytes (32K
1 BASIC Variable systems! are reserved for this on start-up. This value can
Storage be reset by different settings of Random File Buffers,
4 Eracl-;. FCBs, Graphics Videa Memary, Stnng Space or User
' | Memary. -
5. String Space Total space for string data, On start-up, 200 bytes are
. reserved, but this can be reset by the CLEAR statement.
| 6. User Memory | Total space for user machine-language routines. No
space 15 reserved for this on start-up. but this can be
S | reset by the CLEAR staterment,
a2 T68-40959 5000-9FFF Extended COLOR BASIC FtP"-]d Dnlyr ML‘I‘I‘IDW
ROM |
| 40960-49151 | ADOO-BFFF | EDLUF-! BASIC ROM . Read Only Memory
49152-57343 | CO0C-DFFF EDTASM + ROM Read Only Memory
57344-65279 | EOQO-FEFF Unused
| 65280-65535 | FFOO-FFFF | Input/Qutput

63

APPENDIX F/ROM ROUTINES

Appendix F/ROM Routines

The Color BASIC ROM contains many subroutines that
can be called by a machine-language program. Each
subroutine will be described in the following format:

NAME — Entry address
Operation Performed
Entry Condition

Exit Condition

Note: The subroutine NAME is anly for reference,
It is not recognized by the Color Computer. The
entry address is given in hexadecimal form; you
must use an indirect jump to this address. Entry
and Exit Conditions are given for machine-
language programs

BLKIN =[A00G]
Reads a Block from Cassette

Entry Conditions
Cassette must be on and in bit sync (see CSRDON)
CBUFAD contains the buffer address.

Exit Conditions
BLKTYP which is located at 7C, contains the block type:
00 =File Header
1 =Data
FF - End of File
BLKLEN., located at 7D, contains the number of data
bytes in the block (0-255).
7' =1. A=CSRERR = 0 (if no errors).
Z =0, A=CSRERR-=1 (it a checksum error occurs).
Z =0, A=CSRERR =2 (if a memory error occursl.

Note: CSRERR =81

Unless a memory error occurs, X = CBUFAD + BLKLEN.
If a memory error occurs, X points to beyond the bad
address. Interrupts are masked. U and Y are preserved,
all other modified.

*Z is a flag in the Condition Code (CC) register.

BLKOUT =[A0081
Writes a Block to Cassette

Entry Conditions

The tape should be up to speed and a leader of hex 55s
should have been written if this is the first block to be writ-
ten after a motor-on.

CBUFAD, located at 7E, contains the buffer address.
BLKTYP, located at 7C, contains the block type.
BLKLEN, located at 7D. contains the number of data
bytes.

Exit Conditions

Interrupts are masked.

X =CBUFAD + BLKLEN,
All registers are modified.

WRTLDR =[A0OCI

Turns the Cassette On and Writes a Leader

Entry Conditions
None

Exit Conditions
Mone

CHROUT =[A0021]
Outputs a Character to Device

CHROUT cutputs a character to the device specified by
the contents of 6F (DEVMNLUM).

DEVNLM = - 2 (printer)

DEVMNUM = 0 (screen)

Entry Conditions
On entry. the character to be output is in A

Exit Conditions
All reqisters except CC are preserved.

CSRDON=[AQ04]
Starts Cassette

CSREDOM starts the cassette and gets mto bit sync for
reading.

Entry Conditions
None

Exit Conditions
FIRQ and IRO are masked. U and Y are preserved. All
others are modified.

GIVABF =[B4F41

Passes parameter to BASIC

Entry Conditions
D = parameter

Exit Conditions

USH variable = parameter
INTCNV =[B3ED]I

Passes parameter from BASIC

Entry Conditions
USR argument = parameter

Exit Conditions

D = parameter

JOYIN =[AQ0A]
Samples Joystick Pots

JOYIMN zamples all four joystick pots and stores their val-
ues in POTVAL through POTVAL + 3,

Left Joystick
Up/Down 15A
Right/Left 158

Right Joystick
Up/Down 15C
Right/Left 150D

64

==
APPENDIX F/ ROM ROUTINES EMMJ;

For Up/Down, the minimum value - UP Entry Conditions

For Right/Left, the minimum value = LEFT, None

Entry Conditions Exit Conditions

None Z=1, A=0(if no key seen).

Exit Conditions Z=0, A=key code, (if key is seen).

¥ is preserved. All others are maodified B and X are preserved. All others are modified.

POLCAT =[A0001
Polls Keyboard for 2 Character

65

Shschute OrginSwilch .. . 15 OO Regstar o . it M iMagativel o T et e st
ABX (Add Accumidatar B info Incex Registar X1 39 CiCarmy) 2 . b s 26 W (Overfloaw) R RS, |
ADC (Add with Carry. info Regastery I E {Entire Flag} . i b S e 7 -) 24
ADD (Add Memonyinta HLgu er) ... - F (Fast Inferrupt Request Mask) Y. e GOt 7o owimmnobion oSy ot i 4
B s e o = aq HfHalb Cannd) - oo il i ot LM Halt-SymbolicMode o0 |7
WEBRE vl R e i b L 19 | hterriapt] .., 29 Immediate Addressingo
Addrpssang Mades sy an MiNegatived ... oL e m [N (Inerarment) oo ; 44
Direct Addressing gy St WV Cvarlow) . h _ e Indexed Addressing .. = .3
Extanded Addressing |, . . | £ L lerod . : b A L o2 Irdexad Indirect ﬁ\u::h::lnzt*sur‘u,:I Pty i P
Indexed Sddmegsing oo is i 31 Changing Mamaory | RS, incexed Indirect Addressing . I |-
Inherent Addressing Lol i ol 31 CMP{Campare Memaory from RL‘!;;II‘:—'IL-[] Inherent Addressing P |
Irmedaie ADrESSaNg ..o .ooooonanoen an 8-Bit s R o e S e e e .42 gt Mode 2o L FEAE | Lo
Felative Addressing 32 16-Bi1 R R A R ic | Imser Commarsd, 11
AND {Logical AND Memory inio Registan 1) GO [Comple |1||_rnl:| e PR . | [Metretion Sl ... el s i
AND fLogical AND Immediate Memary into Commands .ol 9 Defindtion of Terms ..o .. . - 4
Condition Code Reqgister) | VB i e Auzamblar Commards mnppr:-:ll:r: E'I ..,. 58 Addressig Modes, ... 37
A Register ... skt ez 2 Coay Command | P B Condition Codas, AT
Arithmetic Cperators T S L Oglate Command S ST A Descriptan, s ST
ASCH Maods B e h EditCommand .. 10 DAL | vr. s sem it ; gt)
ASL [Arithmetc Shift Lefd ag Editor Commanos iﬁ.mmux S B . BE Source Forms = L e
ASR Larithmetic Shift Right), 40 Inser GEmmand. oo i L e 11 _ Motaticeys and Codes .., 38
Assambler Commands Appemdix 81, 58 Load Command 1 IR trterrupt Requesst Hardware ... 51
Assembling C.ois iy 13, 15, 25 Print Command iy 1 L o) R D T L e Ry S 44
Aszamhling In Mermorny Switch I3 Printer Commands ., 1o JSA Gump o Subroutine) = a4
Assambly Largusge Program el lir Y Fenumber Command : I LD {Load Reqgester from Mwﬂ{.r!,.']
Comemand, The | ., P PR an Replace Cammando A BBt R |
Operand, The 30 Write Command L Lo o o b A el A i B 45
Addressing Modes. B i | EBLIG Command. .. ool sl il Frem, 1Y LEA (Load Effective Address) ., 45
Direst Addressing a2 LBEUG Commands [.ﬂn..lrzﬂ..r dix Ty 59 Listing Switches 13
Extended Addressing ; &1 Camplax CDperations TR PR e G | Loagd Command:l e 10
Extended Indirect it 31 L e R o e e e e RN Loading B e R A 25
Immediate Addressng 31 CWA (Claar CC bits and '||"'|I'EI|J|:1DF|I'ILF'.'I'I.IP-1] . 43 Logical Qperators. 22
Indexed Addressing A Oa8 (Decimal Addition Adjust) | SRR LSL (Logical Shift Left) Earaih g .45
Indexed Indirect Addressing 32 DEC (Decrement) .., .. e 44 LSR (Logical Shift Reghty .. e 45
Inherent Addressing a Direct Ackdrassieg = : s [Marwal Ongin Swalch . . Ty |
Redative Addrassing. .. .0, . 32 Display Medes, BTN P e RIBTHIR. | Ll s AT L 19
Symbed, The . ,.......... Ce 0 Hali-Symbolic Mode e 17 Lt U [8 T g T e O R) 19
BASIS et D s 2 s hurnernic Mode A s RSN L, R Transferring a Block of Memory .- 1
Aszembling . i h R Symbalic Mode o 17 Memory Map Appendix E L S H
Expcuting .. TETIERRPTR . Delete Commarsl O e 11 Microprocassor T s = 20
Stand-Alane F‘n:u;:r:arn B e OF Reqgister- . .. S .. 29 BB IRER A | L v s A o 20
Basic Subrouting, G Edit Cormrnand ., .. P [4 A and B Registars .. TP ML
Fassirng Pararmebars .. . pila] Editar Cammands [Arpf-rm X ﬁ.] o S q5 GO Heggister ... e E
T o T e e OO S Lt A S 25 Editar Ermor Messages (Append 0., 61 DF Ragister T 74
Bevising,.. - a5 EMO s e a5 g E L 71 | 9
BaASIC Command 11 EOR tEsclusive DR ...\, 44 Lhand S Registers, 29
BASIC Subrouting . . . ver 2B EQU o 35 XandY Fegisters_.... 29
BCC (Branch an Carny Clear) ; Vo e T Examirmng Modes.o o 5 Adnemoanic Mode e e ot I, A c. B
BCS (Branch on Carry Seat) i el ASCH Wade ool ; B Modas
BEGTEME sefting . P | Byvte Mode £ Addressing Modes .. ; R (1]
BECQ) (Branch an Lr.]ua'l.i' 40 Mnermanic Maoda Y i £ Extended Addressing A
BGE (Braach orn Grester than or Equal I-:1 Tarnl 40 Word Mode o .. K Direct Addressing I
BGT (Branch an Greater) 40 Exescuting il APy e Imherent Addressing B AT BT
BHI (Branch if Higher) ; LA T e o BASIC Sul:.n:-uhne Rl PE: 6 Immediate Addressing, a1
BHS (Branch it Higher o Samel ... 5 Passing Paramaters e Indexed Addressing _. .. i
R ey e e e) 4 stand-Alone Progam: |, TG S R Relatve Addressing L e Y2
BLE (Branch on Less than ar ._qu:*' o Zem) . &1 EXG iExchanga Regisers) . ., ... oA Desplay Modes .o .0 e 17
BLO (Branch on Lower) . i . &1 Extended Addressing g e Hal-Symbolic Mode .. e i
BLS (Branch on Lower ar Same) a1 Extended. Inderatt: Lol s . Numeric Mode 17
BELT (Brarssh an Lass than Zeral | | 41 Extendad Indirect A e S R Symbolic Mode .. I 7
Bl (Branch an Minus)] et FCB PR L Lty Rty Mumbering Syetom Modes 21
BHE (Branch Not Equald .. o000 i 4z FCC B e e fnput e 29
G AENENE G0 PIUS] o s i et ot i o 4z | 2Pl M ; i Output L 21
ERA (Branch Always) ;..o 0 4z FIRG (Fast Interrupt Frera.msﬂ Hardware PALIL Chduiltiplyd . Lo L. 45
Breakpaints, setling .. 18 Fiags NEG {(Megated .,_.... o 4B
B Register N R P 20 C (Carry) R K1 ENcr-Maskable interrupt) Hardware 51
BAN (Branch Meverl . | .. 42 EEnfire Flag: No Dbject Code Switch o 16
BSR (Branch i Suhmrurlnrefl NP R o2 F iFas! Interrupl Reguest Mask) NOP Mo Operationd 0 oo q6
BvC (Branch an Cueerfiow Cleart . 42 HiHall Careyl - Motations and Coces 38
Byte Mode 5 Hlrtarrupt Reguest Mask)

67

Mumbsering System Modes
Input Mode
Cutput Mode
Mumeric Mode
Croerand, The %
Addressing Modos
Dparands
Uperaions
Complex DnFrarmm)
Op=rargds
Lperators ; :
Arithmetas {Jnﬂrar-::nra :
Relaticnal Operatoes .
Lo Operalors
Cheeratons
Arithrmehc 'Ell:-ur stoars
Logical Doerators
Relaticnal Dperaiors
CRG

21
21

-

21

iy

S

i

=

)

23
21

Lidd
sl
Sl
PR

)

OH lnclgsive OR t‘-'nmnry inte Begoeter)
CA (rclusiee OR Bemosy nmediate o

Condition Code Begreter)
Crutpuf Mode
Paramazters. Passing
PG Register
Frint Command
Printer Commancs

22
22
22
Jh
48

L3

21

PSHS {Push Registers in the Hardware Stack)

PEHLU (Push Registers on the User Stack)

Pamudo Operations .. _. .
Culiniticn of Terms
EMD ..
ECAl ..
FCE
FEC

1
i
i

A6

238

35
o5

A

>

FE
ORG
RMB
SET

SETLIR =l it

PULS {Puil Registers 1r-:"m 'hF Hard'.ﬂre- Stac}ﬂ

PLLU (Pull Reqistars from the Lisar Stack)

Registers | ..
Aand B Fh=-|:;||=~r|_=r*;
CL Register

O REgISIBE ...l

PC Register ..
Uand 5 Begisters
Xand ¥ Registers
Registers and Flags, examining
Ralatsanal Operators
Ridative Addrassing
FRenumbsr Command
Replace Commang | .
RESTART Hardware
Fevising
FME .
ROL 1Rodate Le-l'l:l e
ROw Routme (Appendix F)
FOA (Rotats Rightt
BT {Raturn from Interupt)
RTS (Return from Subroutne
Sample Program |
Saving Memory ...
SRC (Sublract with Barrow)
SET
SETDP
SEX (Zign Extended) ., .,
GH0S Instruction Set
5 Heqgister

L]

3%

i

o

Sland-Alone Proogram

ST (Btore Reqister info I'.-'Ierr'cur',r:-
=-Bit
16-Eit e T L T

2B {Subiract *-ﬂﬂrnr_'un.- Froam H‘LQI"EEPT]
BBt . .
16-Bit .

S
[Salware Interrupt) ..
[Sofware Intarrupt 23
Software Intarrupt 33
Switches
Assembling i Memrony
Abzsolute Crigin
Listing
Manual Ongiry
Mo Object Switch
Wiail on Errors
=yrmibnd, The

SYNG fsx,.n.:hmﬁ{?'s- i External Ewnﬂ'

Symbndin Moos
TFA (Transfer Reqaster (o Register) . .
Transfemng & Biock of Mamory
TST (Tesi)
LI Fegisies i
LSORG. setmg i
Wait O Errars Switch
Ward Mode
Write Command
X Begister |,
Y Register
ZBLIG
Calculator
Commard
ZBUG Commands [Appandix o1

28

.. 48
1
]

13
15

13

13

29

68

	xEdtasmPage01.JPG
	xEdtasmPage02.JPG
	xEdtasmPage03.jpg
	xEdtasmPage04.jpg
	xEdtasmPage05.jpg
	xEdtasmPage06.jpg
	xEdtasmPage07.jpg
	xEdtasmPage08.jpg
	xEdtasmPage09.jpg
	xEdtasmPage10.jpg
	xEdtasmPage11.jpg
	xEdtasmPage12.jpg
	xEdtasmPage13.jpg
	xEdtasmPage14.jpg
	xEdtasmPage15.jpg
	xEdtasmPage16.jpg
	xEdtasmPage17.jpg
	xEdtasmPage18.jpg
	xEdtasmPage19.jpg
	xEdtasmPage20.jpg
	xEdtasmPage21.jpg
	xEdtasmPage22.jpg
	xEdtasmPage23.jpg
	xEdtasmPage24.jpg
	xEdtasmPage25.jpg
	xEdtasmPage26.jpg
	xEdtasmPage27.jpg
	xEdtasmPage28.jpg
	xEdtasmPage29.jpg
	xEdtasmPage30.jpg
	xEdtasmPage31.jpg
	xEdtasmPage32.jpg
	xEdtasmPage33.jpg
	xEdtasmPage34.jpg
	xEdtasmPage35.jpg
	xEdtasmPage36.jpg
	xEdtasmPage37.jpg
	xEdtasmPage38.jpg
	xEdtasmPage39.jpg
	xEdtasmPage40.jpg
	xEdtasmPage41.jpg
	xEdtasmPage42.jpg
	xEdtasmPage43.jpg
	xEdtasmPage44.jpg
	xEdtasmPage45.jpg
	xEdtasmPage46.jpg
	xEdtasmPage47.jpg
	xEdtasmPage48.jpg
	xEdtasmPage49.jpg
	xEdtasmPage50.jpg
	xEdtasmPage51.jpg
	xEdtasmPage52.jpg
	xEdtasmPage53.jpg
	xEdtasmPage54.jpg
	xEdtasmPage55.jpg
	xEdtasmPage56.jpg
	xEdtasmPage57.jpg
	xEdtasmPage58.jpg
	xEdtasmPage59.jpg
	xEdtasmPage60.jpg
	xEdtasmPage61.jpg
	xEdtasmPage62.jpg
	xEdtasmPage63.jpg
	xEdtasmPage64.jpg
	xEdtasmPage65.jpg
	xEdtasmPage66.jpg
	xEdtasmPage67.jpg
	xEdtasmPage68.jpg

